Robotics/Papers
< Robotics
This section list sites that carry papers on various subjects relevant to robotics.
cs.conncoll.edu/Parker/_papers.html
- Co-Evolving Team Capture Strategies for Dissimilar Robots
- Fitness Biasing to Produce Adaptive Gaits for Hexapod Robots
- Competing Sample Sizes for the Co-Evolution of Heterogeneous Agents
- Partial Recombination for the Co-Evolution of Model Parameters
- Varying Sample Sizes for the Co-Evolution of Heterogeneous Agents
- Punctuated Anytime Learning for Evolving Multi-Agent Capture Strategies
- Cyclic Genetic Algorithms for Evolving Multi-Loop Control Programs
- Continuous Power Supply for a Robot Colony
- Comparison of Sampling Sizes for the Co-Evolution of Cooperative Agents
- Evolving Towers in a 3-Dimensional Simulated Environment
- Evolving Neural Networks for Hexapod Leg Controllers
- Learning Adaptive Leg Cycles Using Fitness Biasing
- Cyclic Genetic Algorithms for Stiquito Locomotion
- Evolving Gaits for the Lynxmotion Hexapod II Robot
- Sampling the Nature of a Population: Punctuated Anytime Learning for Co-Evolving a Team
- Punctuated Anytime Learning for Hexapod Gait Generation
- Learning Area Coverage Using the Co-Evolution of Model Parameters
- Evolving Neural Network Controllers to Produce Leg Cycles for Gait Generation
- Punctuated Anytime Learning for Evolving a Team
- Evolving Cyclic Control for a Hexapod Robot Performing Area Coverage
- The Incremental Evolution of Gaits for Hexapod Robots
- Gait Evolution for a Hexapod Robot
- Learning Control Cycles for Area Coverage with Cyclic Genetic Algorithms
- Co-Evolving Model Parameters for Anytime Learning in Evolutionary Robotics
- Evolving Leg Cycles to Produce Hexapod Gaits
- Punctuated Anytime Learning for Evolutionary Robotics
- The Co-Evolution of Model Parameters and Control Programs in Evolutionary Robotics
- Adaptive Hexapod Gait Control Using Anytime Learning with Fitness Biasing
- Generating Arachnid Robot Gaits with Cyclic Genetic Algorithms
- Locomotion Control Cycles Adapted for Disabilities in Hexapod Robots
- Metachronal Wave Gait Generation for Hexapod Robots
- Evolving Hexapod Gaits Using a Cyclic Genetic Algorithm
- Learning Gaits for the Stiquito
- Using Cyclic Genetic Algorithms to Reconfigure Hardware Controllers for Robots
- Cyclic Genetic Algorithms for the Locomotion of Hexapod Robots
- Genetic Algorithms for the Development of Real-Time Multi-Heuristic Search Strategies