# Real Analysis/Total Variation

←Continuity | Real Analysis Total Variation |
Arc Length→ |

Let f be a continuous function on an interval [a,b]. A partition of f on the interval [a,b] is a sequence x_{k} such that a=x_{0}< x_{1} <...< x_{k-1} < x_{k} < ...x_{n}=b. The total variation t of a function on the interval [a,b] is the supremum

t= sup{ : x_{k} is a partition of [a,b]}.

If this supremum exists, then the function is of bounded variation on [a,b]. If a real function is of bounded variation over its whole domain, then it is called a function of bounded variation.