Quantum Mechanical Harmonic Oscillator Wavefunction
edit
A system undergoing harmonic motion around an equilibrium is known as a harmonic oscillator.
In quantum chemistry, the harmonic oscillator refers to a simplified model often used to describe how a diatomic molecule vibrates. This is because it behaves like two masses on a spring with a potential energy that depends on the displacement from the equilibrium, but the energy levels are quantized and equally spaced. The potential energy
V
(
x
)
=
1
2
k
x
2
{\displaystyle V(x)={\frac {1}{2}}kx^{2}}
is non-zero and can theoretically range from
x
=
[
−
∞
,
∞
]
{\displaystyle x=[-\infty {\text{ , }}\infty ]}
.
The wavefunction for the quantum harmonic oscillator is given by the Hermite polynomials multiplied by the Gaussian function. The general form of the wavefunction is:
ψ
v
=
N
v
⋅
H
v
(
m
w
ℏ
x
)
⋅
exp
(
−
m
w
2
ℏ
x
2
)
{\displaystyle \psi _{v}=N_{v}\cdot H_{v}\left({\sqrt {\frac {mw}{\hbar }}}x\right)\cdot \exp \left({\frac {-mw}{2\hbar }}x^{2}\right)}
With:
v
=
Quantum number
{\displaystyle v={\text{Quantum number}}}
N
v
=
Normalization factor
{\displaystyle N_{v}={\text{Normalization factor}}}
H
v
=
v
-th Hermite polynomial
{\displaystyle H_{v}=v{\text{-th Hermite polynomial}}}
The first four Hermite polynomials are:
H
0
(
x
)
=
1
,
H
1
(
x
)
=
2
x
,
H
2
(
x
)
=
4
x
2
−
2
,
H
3
(
x
)
=
8
x
3
−
12
x
.
{\displaystyle {\begin{aligned}H_{0}(x)&=1,\\H_{1}(x)&=2x,\\H_{2}(x)&=4x^{2}-2,\\H_{3}(x)&=8x^{3}-12x.\\\end{aligned}}}
m
=
Mass of particle
{\displaystyle m={\text{Mass of particle}}}
w
=
Angular frequency of the oscillator
{\displaystyle w={\text{Angular frequency of the oscillator}}}
ℏ
=
Reduced Planck's constant
{\displaystyle \hbar ={\text{Reduced Planck's constant}}}
x
=
Position
{\displaystyle x={\text{Position}}}
Normalization of a Wavefunction
edit
The probability of finding the particle in any state is given by the square of the wavefunction. Therefore normalizing a wavefunction in quantum mechanics means ensuring that the total probability of finding a particle in all possible positions is equal to 1. A normalized wavefunction is one that satisfies the normalization condition:
∫
−
∞
∞
∣
ψ
(
x
)
∣
2
d
x
=
1
{\displaystyle \int _{-\infty }^{\infty }\mid \psi (x)\mid ^{2}dx=1}
Normalization is important because it ensures that the probability of finding the particle somewhere in space is 100%.
Show the derivation of the normalization factor of the v=1 state of the harmonic oscillator beginning from the unnormalized wavefunction.
ψ
v
=
N
v
⋅
H
v
(
m
w
ℏ
x
)
⋅
exp
(
−
m
w
2
ℏ
x
2
)
{\displaystyle \psi _{v}=N_{v}\cdot H_{v}\left({\sqrt {\frac {mw}{\hbar }}}x\right)\cdot \exp \left({\frac {-mw}{2\hbar }}x^{2}\right)}
N
v
2
∫
−
∞
∞
H
v
2
(
m
w
ℏ
x
)
⋅
exp
(
−
m
w
ℏ
x
2
)
d
x
=
{\displaystyle N_{v}^{2}\int _{-\infty }^{\infty }H_{v}^{2}\left({\sqrt {\frac {mw}{\hbar }}}x\right)\cdot \exp \left({\frac {-mw}{\hbar }}x^{2}\right)dx=}
Let
y
=
(
m
w
ℏ
)
x
{\displaystyle {\text{Let }}y=\left({\sqrt {\frac {mw}{\hbar }}}\right)x}
N
v
2
∫
−
∞
∞
H
v
(
y
)
H
v
(
y
)
⋅
exp
(
−
y
2
)
ℏ
m
w
d
y
=
{\displaystyle N_{v}^{2}\int _{-\infty }^{\infty }H_{v}(y)H_{v}(y)\cdot \exp \left(-y^{2}\right){\sqrt {\frac {\hbar }{mw}}}dy=}
N
v
2
ℏ
m
w
(
−
1
)
v
∫
−
∞
∞
H
v
(
y
)
d
v
d
y
v
exp
(
−
y
2
)
d
y
=
{\displaystyle N_{v}^{2}{\sqrt {\frac {\hbar }{mw}}}(-1)^{v}\int _{-\infty }^{\infty }H_{v}(y){\frac {d^{v}}{dy^{v}}}\exp \left(-y^{2}\right)dy=}
N
v
2
ℏ
m
w
∫
−
∞
∞
exp
(
−
y
2
)
d
v
d
y
v
H
v
(
y
)
d
y
=
{\displaystyle N_{v}^{2}{\sqrt {\frac {\hbar }{mw}}}\int _{-\infty }^{\infty }\exp(-y^{2}){\frac {d^{v}}{dy^{v}}}H_{v}(y)dy=}
N
v
2
ℏ
m
w
2
v
v
!
π
=
{\displaystyle N_{v}^{2}{\sqrt {\frac {\hbar }{mw}}}2^{v}v!{\sqrt {\pi }}=}
N
v
=
1
2
v
v
!
(
m
w
π
ℏ
)
1
/
4
{\displaystyle N_{v}={\frac {1}{\sqrt {2^{v}v!}}}\left({\frac {mw}{\pi \hbar }}\right)^{1/4}}
Sub in v=1
N
1
=
1
2
1
1
!
(
m
w
π
ℏ
)
1
/
4
=
1
2
(
m
w
π
ℏ
)
1
/
4
{\displaystyle N_{1}={\frac {1}{\sqrt {2^{1}1!}}}\left({\frac {mw}{\pi \hbar }}\right)^{1/4}={\frac {1}{\sqrt {2}}}\left({\frac {mw}{\pi \hbar }}\right)^{1/4}}
Prove that
ψ
1
{\displaystyle \psi _{1}}
is normalized (using notation from class)
ψ
1
=
(
4
α
3
π
)
1
/
4
x
exp
(
−
α
x
2
2
)
{\displaystyle \psi _{1}=\left({\frac {4\alpha ^{3}}{\pi }}\right)^{1/4}x\exp \left({\frac {-\alpha x^{2}}{2}}\right)}
, where
α
=
(
k
μ
ℏ
2
)
{\displaystyle \alpha =\left({\sqrt {\frac {k\mu }{\hbar ^{2}}}}\right)}
∫
−
∞
∞
∣
ψ
1
∣
2
d
x
=
(
4
α
3
π
)
1
/
2
∫
−
∞
∞
x
2
exp
−
α
x
2
d
x
=
(
4
α
3
π
)
1
/
2
(
1
2
α
(
π
α
)
1
/
2
)
=
1
{\displaystyle \int _{-\infty }^{\infty }\mid \psi _{1}\mid ^{2}dx=\left({\frac {4\alpha ^{3}}{\pi }}\right)^{1/2}\int _{-\infty }^{\infty }x^{2}\exp ^{-\alpha x^{2}}dx=\left({\frac {4\alpha ^{3}}{\pi }}\right)^{1/2}\left({\frac {1}{2\alpha }}\left({\frac {\pi }{\alpha }}\right)^{1/2}\right)=1}