# Principles of Finance/Section 1/Chapter 3/Applications of Time Value of Money/Perpetuities

A "perpetuity" is a theoretical bond which makes payment during its entire life. One realizable example of this is a company issued stock which always pays dividends each year. The lifetime is defined from the time of issuance until buy back or potential bankruptcy.

A perpetuity, such as preferred stock, can be valued by simply dividing the payment by the applicable discount rate.

PVPerpetuity = ${\frac {C}{r}}$ Example:

XYZ Corp. preferred stock pays a $2 dividend every year. This dividend is expected to remain constant for the forseeable future. If investors are requiring a 10% return, what is the stock selling for? $PV={\frac {\2}{.10}}=\20$ Therefore, XYZ Co. stock should sell for$20 per share.

## Growing Perpetuities

A growing perpetuity is one whose payments increase at a certain rate forever. They can be valued by the following formula, where C1 is the payment during the upcoming payment period, r is the discount rate, and g is the growth rate:

PVGrowing Perpetuity = ${\frac {C}{r-g}}$

Example:

Madeline and Thurgood Johnson wish to set up a trust fund for their grandson which will begin paying \$5,000 next year. They wish to have the payments grow at 5% per year to keep pace with inflation. If the current discount rate is 8%, what should they pay for the perpetuity?

PVGrowing Perpetuity = ${\frac {\5,000}{.08-.05}}=\166,666.67$