A circuit of two components R and L connected in series

Natural Response of the cicuit can be obtained by setting the differential equation of the circuit to zero

- $v_{L}+v_{R}=0$
- $L{\frac {dI}{dt}}+IR=0$
- ${\frac {dI}{dt}}=-{\frac {1}{T}}I$
- $\int {\frac {dI}{I}}=-{\frac {1}{T}}\int dt$
- $LnI=-{\frac {1}{T}}+C$
- $I=e^{(-{\frac {1}{T}}+C)}$
- $I=Ae^{-{\frac {t}{T}}}$
- $T={\frac {L}{R}}$
- $e^{C}=IR$