At resonance, the impedance of the frequency dependent components cancel out . Therefore the net voltage of the circui is zero
and
At Resonance Frequency
.
. Current is at its maximum value
Further analyse the circuit
At ω = 0, Capacitor Opened circuit . Therefore, I = 0 .
At ω = 00, Inductor Opened circuit . Therefore, I = 0 .
With the values of Current at three ω = 0 , , 00 we have the plot of I versus ω . From the plot
If current is reduced to halved of the value of peak current , this current value is stable over a Frequency Band ω1 - ω2 where ω1 = ωo - Δω, ω2 = ωo + Δω
In RLC series, it is possible to have a band of frequencies where current is stable, ie. current does not change with frequency . For a wide band of frequencies respond, current must be reduced from it's peak value . The more current is reduced, the wider the bandwidth . Therefore, this network can be used as Tuned Selected Band Pass Filter . If tune either L or C to the resonance frequency . Current is at its maximum value . Then, adjust the value of R to have a value less than the peak current by increasing R to have a desired frequency band .
If R is increased from R to 2R then the current now is which is stable over a band of frequency
ω1 - ω2 where
ω1 = ωo - Δω
ω2 = ωo + Δω
For value of I < . The circuit respond to Wide Band of frequencies . For value of < I > . The circuit respond to Narrow Band of frequencies