In the first chapter, we had already seen the one-dimensional transport equation. In this chapter we will see that we can quite easily generalise the solution method and the uniqueness proof we used there to multiple dimensions. Let
d
∈
N
{\displaystyle d\in \mathbb {N} }
. The inhomogenous
d
{\displaystyle d}
-dimensional transport equation looks like this:
∀
(
t
,
x
)
∈
R
×
R
d
:
∂
t
u
(
t
,
x
)
−
v
⋅
∇
x
u
(
t
,
x
)
=
f
(
t
,
x
)
{\displaystyle \forall (t,x)\in \mathbb {R} \times \mathbb {R} ^{d}:\partial _{t}u(t,x)-\mathbf {v} \cdot \nabla _{x}u(t,x)=f(t,x)}
, where
f
:
R
×
R
d
→
R
{\displaystyle f:\mathbb {R} \times \mathbb {R} ^{d}\to \mathbb {R} }
is a function and
v
∈
R
d
{\displaystyle \mathbf {v} \in \mathbb {R} ^{d}}
is a vector.
The following definition will become a useful shorthand notation in many occasions. Since we can use it right from the beginning of this chapter, we start with it.
Before we prove a solution formula for the transport equation, we need a theorem from analysis which will play a crucial role in the proof of the solution formula.
Theorem 2.2 : (Leibniz' integral rule)
Let
O
⊆
R
{\displaystyle O\subseteq \mathbb {R} }
be open and
B
⊆
R
d
{\displaystyle B\subseteq \mathbb {R} ^{d}}
, where
d
∈
N
{\displaystyle d\in \mathbb {N} }
is arbitrary, and let
f
∈
C
1
(
O
×
B
)
{\displaystyle f\in {\mathcal {C}}^{1}(O\times B)}
. If the conditions
for all
x
∈
O
{\displaystyle x\in O}
,
∫
B
|
f
(
x
,
y
)
|
d
y
<
∞
{\displaystyle \int _{B}|f(x,y)|dy<\infty }
for all
x
∈
O
{\displaystyle x\in O}
and
y
∈
B
{\displaystyle y\in B}
,
d
d
x
f
(
x
,
y
)
{\displaystyle {\frac {d}{dx}}f(x,y)}
exists
there is a function
g
:
B
→
R
{\displaystyle g:B\to \mathbb {R} }
such that
∀
(
x
,
y
)
∈
O
×
B
:
|
∂
x
f
(
x
,
y
)
|
≤
|
g
(
y
)
|
and
∫
B
|
g
(
y
)
|
d
y
<
∞
{\displaystyle \forall (x,y)\in O\times B:|\partial _{x}f(x,y)|\leq |g(y)|{\text{ and }}\int _{B}|g(y)|dy<\infty }
hold, then
d
d
x
∫
B
f
(
x
,
y
)
d
y
=
∫
B
d
d
x
f
(
x
,
y
)
{\displaystyle {\frac {d}{dx}}\int _{B}f(x,y)dy=\int _{B}{\frac {d}{dx}}f(x,y)}
We will omit the proof.
Theorem 2.3 :
If
f
∈
C
1
(
R
×
R
d
)
{\displaystyle f\in {\mathcal {C}}^{1}(\mathbb {R} \times \mathbb {R} ^{d})}
,
g
∈
C
1
(
R
d
)
{\displaystyle g\in {\mathcal {C}}^{1}(\mathbb {R} ^{d})}
and
v
∈
R
d
{\displaystyle \mathbf {v} \in \mathbb {R} ^{d}}
, then the function
u
:
R
×
R
d
→
R
,
u
(
t
,
x
)
:=
g
(
x
+
v
t
)
+
∫
0
t
f
(
s
,
x
+
v
(
t
−
s
)
)
d
s
{\displaystyle u:\mathbb {R} \times \mathbb {R} ^{d}\to \mathbb {R} ,u(t,x):=g(x+\mathbf {v} t)+\int _{0}^{t}f(s,x+\mathbf {v} (t-s))ds}
solves the inhomogenous
d
{\displaystyle d}
-dimensional transport equation
∀
(
t
,
x
)
∈
R
×
R
d
:
∂
t
u
(
t
,
x
)
−
v
⋅
∇
x
u
(
t
,
x
)
=
f
(
t
,
x
)
{\displaystyle \forall (t,x)\in \mathbb {R} \times \mathbb {R} ^{d}:\partial _{t}u(t,x)-\mathbf {v} \cdot \nabla _{x}u(t,x)=f(t,x)}
Note that, as in chapter 1, that there are many solutions, one for each continuously differentiable
g
{\displaystyle g}
in existence.
Proof :
1.
We show that
u
{\displaystyle u}
is sufficiently often differentiable. From the chain rule follows that
g
(
x
+
v
t
)
{\displaystyle g(x+\mathbf {v} t)}
is continuously differentiable in all the directions
t
,
x
1
,
…
,
x
d
{\displaystyle t,x_{1},\ldots ,x_{d}}
. The existence of
∂
x
n
∫
0
t
f
(
s
,
x
+
v
(
t
−
s
)
)
d
s
,
n
∈
{
1
,
…
,
d
}
{\displaystyle \partial _{x_{n}}\int _{0}^{t}f(s,x+\mathbf {v} (t-s))ds,n\in \{1,\ldots ,d\}}
follows from the Leibniz integral rule (see exercise 1). The expression
∂
t
∫
0
t
f
(
s
,
x
+
v
(
t
−
s
)
)
d
s
{\displaystyle \partial _{t}\int _{0}^{t}f(s,x+\mathbf {v} (t-s))ds}
we will later in this proof show to be equal to
f
(
t
,
x
)
+
v
⋅
∇
x
∫
0
t
f
(
s
,
x
+
v
(
t
−
s
)
)
d
s
{\displaystyle f(t,x)+\mathbf {v} \cdot \nabla _{x}\int _{0}^{t}f(s,x+\mathbf {v} (t-s))ds}
,
which exists because
∇
x
∫
0
t
f
(
s
,
x
+
v
(
t
−
s
)
)
d
s
{\displaystyle \nabla _{x}\int _{0}^{t}f(s,x+\mathbf {v} (t-s))ds}
just consists of the derivatives
∂
x
n
∫
0
t
f
(
s
,
x
+
v
(
t
−
s
)
)
d
s
,
n
∈
{
1
,
…
,
d
}
{\displaystyle \partial _{x_{n}}\int _{0}^{t}f(s,x+\mathbf {v} (t-s))ds,n\in \{1,\ldots ,d\}}
2.
We show that
∀
(
t
,
x
)
∈
R
×
R
d
:
∂
t
u
(
t
,
x
)
−
v
⋅
∇
x
u
(
t
,
x
)
=
f
(
t
,
x
)
{\displaystyle \forall (t,x)\in \mathbb {R} \times \mathbb {R} ^{d}:\partial _{t}u(t,x)-\mathbf {v} \cdot \nabla _{x}u(t,x)=f(t,x)}
in three substeps.
2.1
We show that
∂
t
g
(
x
+
v
t
)
−
v
⋅
∇
x
g
(
x
+
v
t
)
=
0
(
∗
)
{\displaystyle \partial _{t}g(x+\mathbf {v} t)-\mathbf {v} \cdot \nabla _{x}g(x+\mathbf {v} t)=0~~~~~(*)}
This is left to the reader as an exercise in the application of the multi-dimensional chain rule (see exercise 2).
2.2
We show that
∂
t
∫
0
t
f
(
s
,
x
+
v
(
t
−
s
)
)
d
s
−
v
⋅
∇
x
∫
0
t
f
(
s
,
x
+
v
(
t
−
s
)
)
d
s
=
f
(
t
,
x
)
(
∗
∗
)
{\displaystyle \partial _{t}\int _{0}^{t}f(s,x+\mathbf {v} (t-s))ds-\mathbf {v} \cdot \nabla _{x}\int _{0}^{t}f(s,x+\mathbf {v} (t-s))ds=f(t,x)~~~~~(**)}
We choose
F
(
t
,
x
)
:=
∫
0
t
f
(
s
,
x
−
v
s
)
d
s
{\displaystyle F(t,x):=\int _{0}^{t}f(s,x-\mathbf {v} s)ds}
so that we have
F
(
t
,
x
+
v
t
)
=
∫
0
t
f
(
s
,
x
+
v
(
t
−
s
)
)
d
s
{\displaystyle F(t,x+\mathbf {v} t)=\int _{0}^{t}f(s,x+\mathbf {v} (t-s))ds}
By the multi-dimensional chain rule, we obtain
d
d
t
F
(
t
,
x
+
v
t
)
=
(
∂
t
F
(
t
,
x
+
v
t
)
∂
x
1
F
(
t
,
x
+
v
t
)
⋯
∂
x
d
F
(
t
,
x
+
v
t
)
)
(
1
v
)
=
∂
t
F
(
t
,
x
+
v
t
)
+
v
⋅
∇
x
F
(
t
,
x
+
v
t
)
{\displaystyle {\begin{aligned}{\frac {d}{dt}}F(t,x+\mathbf {v} t)&={\begin{pmatrix}\partial _{t}F(t,x+\mathbf {v} t)&\partial _{x_{1}}F(t,x+\mathbf {v} t)&\cdots &\partial _{x_{d}}F(t,x+\mathbf {v} t)\end{pmatrix}}{\begin{pmatrix}1\\\mathbf {v} \end{pmatrix}}\\&=\partial _{t}F(t,x+\mathbf {v} t)+\mathbf {v} \cdot \nabla _{x}F(t,x+\mathbf {v} t)\end{aligned}}}
But on the one hand, we have by the fundamental theorem of calculus, that
∂
t
F
(
t
,
x
)
=
f
(
t
,
x
−
v
t
)
{\displaystyle \partial _{t}F(t,x)=f(t,x-\mathbf {v} t)}
and therefore
∂
t
F
(
t
,
x
+
v
t
)
=
f
(
t
,
x
)
{\displaystyle \partial _{t}F(t,x+\mathbf {v} t)=f(t,x)}
and on the other hand
∂
x
n
F
(
t
,
x
+
v
t
)
=
∂
x
n
∫
0
t
f
(
s
,
x
+
v
(
t
−
s
)
)
d
s
{\displaystyle \partial _{x_{n}}F(t,x+\mathbf {v} t)=\partial _{x_{n}}\int _{0}^{t}f(s,x+\mathbf {v} (t-s))ds}
, seeing that the differential quotient of the definition of
∂
x
n
{\displaystyle \partial _{x_{n}}}
is equal for both sides. And since on the third hand
d
d
t
F
(
t
,
x
+
v
t
)
=
∂
t
∫
0
t
f
(
s
,
x
+
v
(
t
−
s
)
)
d
s
{\displaystyle {\frac {d}{dt}}F(t,x+\mathbf {v} t)=\partial _{t}\int _{0}^{t}f(s,x+\mathbf {v} (t-s))ds}
, the second part of the second part of the proof is finished.
2.3
We add
(
∗
)
{\displaystyle (*)}
and
(
∗
∗
)
{\displaystyle (**)}
together, use the linearity of derivatives and see that the equation is satisfied.
◻
{\displaystyle \Box }
Initial value problem
edit
Theorem and definition 2.4 :
If
f
∈
C
1
(
R
×
R
d
)
{\displaystyle f\in {\mathcal {C}}^{1}(\mathbb {R} \times \mathbb {R} ^{d})}
and
g
∈
C
1
(
R
d
)
{\displaystyle g\in {\mathcal {C}}^{1}(\mathbb {R} ^{d})}
, then the function
u
:
R
×
R
d
→
R
,
u
(
t
,
x
)
:=
g
(
x
+
v
t
)
+
∫
0
t
f
(
s
,
x
+
v
(
t
−
s
)
)
d
s
{\displaystyle u:\mathbb {R} \times \mathbb {R} ^{d}\to \mathbb {R} ,u(t,x):=g(x+\mathbf {v} t)+\int _{0}^{t}f(s,x+\mathbf {v} (t-s))ds}
is the unique solution of the initial value problem of the transport equation
{
∀
(
t
,
x
)
∈
R
×
R
d
:
∂
t
u
(
t
,
x
)
−
v
⋅
∇
x
u
(
t
,
x
)
=
f
(
t
,
x
)
∀
x
∈
R
d
:
u
(
0
,
x
)
=
g
(
x
)
{\displaystyle {\begin{cases}\forall (t,x)\in \mathbb {R} \times \mathbb {R} ^{d}:&\partial _{t}u(t,x)-\mathbf {v} \cdot \nabla _{x}u(t,x)=f(t,x)\\\forall x\in \mathbb {R} ^{d}:&u(0,x)=g(x)\end{cases}}}
Proof :
Quite easily,
u
(
0
,
x
)
=
g
(
x
+
v
⋅
0
)
+
∫
0
0
f
(
s
,
x
+
v
(
t
−
s
)
)
d
s
=
g
(
x
)
{\displaystyle u(0,x)=g(x+\mathbf {v} \cdot 0)+\int _{0}^{0}f(s,x+\mathbf {v} (t-s))ds=g(x)}
. Therefore, and due to theorem 2.3,
u
{\displaystyle u}
is a solution to the initial value problem of the transport equation. So we proceed to show uniqueness.
Assume that
v
{\displaystyle v}
is an arbitrary other solution. We show that
v
=
u
{\displaystyle v=u}
, thereby excluding the possibility of a different solution.
We define
w
:=
u
−
v
{\displaystyle w:=u-v}
. Then
∀
(
t
,
x
)
∈
R
×
R
d
:
∂
t
w
(
t
,
x
)
−
v
⋅
∇
x
w
(
t
,
x
)
=
(
∂
t
u
(
t
,
x
)
−
v
⋅
∇
x
u
(
t
,
x
)
)
−
(
∂
t
v
(
t
,
x
)
−
v
⋅
∇
x
v
(
t
,
x
)
)
=
f
(
t
,
x
)
−
f
(
t
,
x
)
=
0
(
∗
)
∀
x
∈
R
d
:
w
(
0
,
x
)
=
u
(
0
,
x
)
−
v
(
0
,
x
)
=
g
(
x
)
−
g
(
x
)
=
0
(
∗
∗
)
{\displaystyle {\begin{array}{llll}\forall (t,x)\in \mathbb {R} \times \mathbb {R} ^{d}:&\partial _{t}w(t,x)-\mathbf {v} \cdot \nabla _{x}w(t,x)&=(\partial _{t}u(t,x)-\mathbf {v} \cdot \nabla _{x}u(t,x))-(\partial _{t}v(t,x)-\mathbf {v} \cdot \nabla _{x}v(t,x))&\\&&=f(t,x)-f(t,x)=0&~~~~~(*)\\\forall x\in \mathbb {R} ^{d}:&w(0,x)=u(0,x)-v(0,x)&=g(x)-g(x)=0&~~~~~(**)\end{array}}}
Analogous to the proof of uniqueness of solutions for the one-dimensional homogenous initial value problem of the transport equation in the first chapter, we define for arbitrary
(
t
,
x
)
∈
R
×
R
d
{\displaystyle (t,x)\in \mathbb {R} \times \mathbb {R} ^{d}}
,
μ
(
t
,
x
)
(
ξ
)
:=
w
(
t
−
ξ
,
x
+
v
ξ
)
{\displaystyle \mu _{(t,x)}(\xi ):=w(t-\xi ,x+\mathbf {v} \xi )}
Using the multi-dimensional chain rule, we calculate
μ
(
t
,
x
)
′
(
ξ
)
{\displaystyle \mu _{(t,x)}'(\xi )}
:
μ
(
t
,
x
)
′
(
ξ
)
:=
d
d
ξ
w
(
t
−
ξ
,
x
+
v
ξ
)
by defs. of the
′
symbol and
μ
=
(
∂
t
w
(
t
−
ξ
,
x
+
v
ξ
)
∂
x
1
w
(
t
−
ξ
,
x
+
v
ξ
)
⋯
∂
x
d
w
(
t
−
ξ
,
x
+
v
ξ
)
)
(
−
1
v
)
chain rule
=
−
∂
t
w
(
t
−
ξ
,
x
+
v
ξ
)
+
v
⋅
∇
x
w
(
t
−
ξ
,
x
+
v
ξ
)
=
0
(
∗
)
{\displaystyle {\begin{aligned}\mu _{(t,x)}'(\xi )&:={\frac {d}{d\xi }}w(t-\xi ,x+\mathbf {v} \xi )&{\text{ by defs. of the }}'{\text{ symbol and }}\mu \\&={\begin{pmatrix}\partial _{t}w(t-\xi ,x+\mathbf {v} \xi )&\partial _{x_{1}}w(t-\xi ,x+\mathbf {v} \xi )&\cdots &\partial _{x_{d}}w(t-\xi ,x+\mathbf {v} \xi )\end{pmatrix}}{\begin{pmatrix}-1\\\mathbf {v} \end{pmatrix}}&{\text{chain rule}}\\&=-\partial _{t}w(t-\xi ,x+\mathbf {v} \xi )+\mathbf {v} \cdot \nabla _{x}w(t-\xi ,x+\mathbf {v} \xi )&\\&=0&(*)\end{aligned}}}
Therefore, for all
(
t
,
x
)
∈
R
×
R
d
{\displaystyle (t,x)\in \mathbb {R} \times \mathbb {R} ^{d}}
μ
(
t
,
x
)
(
ξ
)
{\displaystyle \mu _{(t,x)}(\xi )}
is constant, and thus
∀
(
t
,
x
)
∈
R
×
R
d
:
w
(
t
,
x
)
=
μ
(
t
,
x
)
(
0
)
=
μ
(
t
,
x
)
(
t
)
=
w
(
0
,
x
+
v
t
)
=
(
∗
∗
)
0
{\displaystyle \forall (t,x)\in \mathbb {R} \times \mathbb {R} ^{d}:w(t,x)=\mu _{(t,x)}(0)=\mu _{(t,x)}(t)=w(0,x+\mathbf {v} t){\overset {(**)}{=}}0}
, which shows that
w
=
u
−
v
=
0
{\displaystyle w=u-v=0}
and thus
u
=
v
{\displaystyle u=v}
.
◻
{\displaystyle \Box }
Let
f
∈
C
1
(
R
×
R
d
)
{\displaystyle f\in {\mathcal {C}}^{1}(\mathbb {R} \times \mathbb {R} ^{d})}
and
v
∈
R
d
{\displaystyle \mathbf {v} \in \mathbb {R} ^{d}}
. Using Leibniz' integral rule, show that for all
n
∈
{
1
,
…
,
d
}
{\displaystyle n\in \{1,\ldots ,d\}}
the derivative
∂
x
n
∫
0
t
f
(
s
,
x
+
v
(
t
−
s
)
)
d
s
{\displaystyle \partial _{x_{n}}\int _{0}^{t}f(s,x+\mathbf {v} (t-s))ds}
is equal to
∫
0
t
∂
x
n
f
(
s
,
x
+
v
(
t
−
s
)
)
d
s
{\displaystyle \int _{0}^{t}\partial _{x_{n}}f(s,x+\mathbf {v} (t-s))ds}
and therefore exists.
Let
g
∈
C
1
(
R
d
)
{\displaystyle g\in {\mathcal {C}}^{1}(\mathbb {R} ^{d})}
and
v
∈
R
d
{\displaystyle \mathbf {v} \in \mathbb {R} ^{d}}
. Calculate
∂
t
g
(
x
+
v
t
)
{\displaystyle \partial _{t}g(x+\mathbf {v} t)}
.
Find the unique solution to the initial value problem
{
∀
(
t
,
x
)
∈
R
×
R
3
:
∂
t
u
(
t
,
x
)
−
(
2
3
4
)
⋅
∇
x
u
(
t
,
x
)
=
t
5
+
x
1
6
+
x
2
7
+
x
3
8
∀
x
∈
R
3
:
u
(
0
,
x
)
=
x
1
9
+
x
2
10
+
x
3
11
{\displaystyle {\begin{cases}\forall (t,x)\in \mathbb {R} \times \mathbb {R} ^{3}:&\partial _{t}u(t,x)-{\begin{pmatrix}2\\3\\4\end{pmatrix}}\cdot \nabla _{x}u(t,x)=t^{5}+x_{1}^{6}+x_{2}^{7}+x_{3}^{8}\\\forall x\in \mathbb {R} ^{3}:&u(0,x)=x_{1}^{9}+x_{2}^{10}+x_{3}^{11}\end{cases}}}
.