Organic Chemistry/Foundational concepts of organic chemistry/Bonding

< Electronegativity | Electron dot structure >

Ionic Bonding edit

The Sodium Chloride Crystal Structure. Each atom has six nearest neighbors, with octahedral geometry. This arrangement is known as c close packed (ccp).
Light blue = Na+
Dark green = Cl-

Ionic bonding is when positively and negatively charged ions stick to each other through electrostatic force. These bonds are slightly weaker than covalent bonds and stronger than Van der Waals bonding or hydrogen bonding.

In ionic bonds the electronegativity of the negative ion is so much stronger than the electronegativity of the positive ion that the two ions do not share electrons. Rather, the more electronegative ion assumes full ownership of the electron(s).

Perhaps the most common example of an ionically bonded substance is NaCl, or table salt. In this, the sodium (Na) atom gives up an electron to the much more electronegative chlorine (Cl) atom, and the two atoms become ions, Na+ and Cl-.The electrostatic bonding force between the two oppositely charged ions extends outside the local area attracting other ions to form giant crystal structures. For this reason most ionically bonded materials are solid at room temperature.

Sodium chloride forms crystals with cubic symmetry. In these, the larger chloride ions are arranged in a cubic close-packing, while the smaller sodium ions fill the octahedral gaps between them. Each ion is surrounded by six of the other kind. This same basic structure is found in many other minerals, and is known as the halite structure.

Covalent Bonding edit

Covalent bonding is close to the heart of organic chemistry. This is where two atoms share electrons in a bond. The goal of each atom is to fill its octet as well as have a formal charge of zero. To do this, atomic nuclei share electrons in the space between them. This sharing also allows the atoms to reach a lower energy state, which stabilizes the molecule. Most reactions in chemistry are due to molecules achieving a lower energy state. Covalent bonds are most frequently seen between atoms with similar electronegativity. In molecules that only have one type of atom, e.g. H2 or O2 , the electronegativity of the atoms is essentially identical, so they cannot form ionic bonds. They always form covalent bonds.

Carbon is especially good at covalent bonding because its electronegativity is intermediate relative to other atoms. That means it can give as well as take electrons as needs warrant.

Covalently bonded compounds have strong internal bonds but weak attractive forces between molecules. Because of these weak attractive forces, the melting and boiling points of these compounds are much lower than compounds with ionic bonds. Therefore, such compounds are much more likely to be liquids or gases at room temperature than ionically bonded compounds.

In molecules formed from two atoms of the same element, there is no difference in the electronegativity of the bonded atoms, so the electrons in the covalent bond are shared equally, resulting in a completely non-polar covalent bond. In covalent bonds where the bonded atoms are different elements, there is a difference in electronegativities between the two atoms. The atom that is more electronegative will attract the bonding electrons more toward itself than the less electronegative atom. The difference in charge on the two atoms because of the electrons causes the covalent bond to be polar. Greater differences in electronegativity result in more polar bonds. Depending on the difference in electronegativities, the polarity of a bond can range from non-polar covalent to ionic with varying degrees of polar covalent in between. An overall imbalance in charge from one side of a molecule to the other side is called a dipole moment. Such molecules are said to be polar. For a completely symmetrical covalently bonded molecule, the overall dipole moment of the molecule is zero. Molecules with larger dipole moments are more polar. The most common polar molecule is water.

Bond Polarity and Dipole Moment edit


The ideas of bond polarity and dipole moment play important roles in organic chemistry.

If you look at the image of methane on the right, the single most important aspect of it in terms of bond polarity is that it is a symmetric molecule. It has 4 hydrogens, all bonded at 109.5° from the other, and all with precisely the same bond angle. Each carbon-hydrogen bond is slightly polar (hydrogen has an electronegativity of 2.1, carbon 2.5), but because of this symmetry, the polarities cancel each other out and overall, methane is a non-polar molecule.

The distinction is between Bond Polarity and Molecular polarity. The total polarity of a molecule is measured as Dipole Moment. The actual calculation of dipole moment isn't really necessary so much as an understanding of what it means. Frequently, a guesstimate of dipole moment is pretty easy once you understand the concept and until you get into the more advanced organic chemistry, exact values are of little value.

Basically, the molecular polarity is, essentially, the summation of the vectors of all of the bond polarities in a molecule.

Van der Waals Bonding edit

Van der Waals bonding is the collective name for three types of interactions:

  1. Permanent Dipole interactions: these are the electrostatic attractive forces between two dipoles, these are responsible for fluromethane's (CH3F) high boiling point (about -15 deg C) compared to Nitrogen (about -180 deg C).
  2. Permanent dipole / induced dipole: these are the interactions between a permanent dipole and another molecule, causing the latter molecule's electron cloud to be distorted and thus have an induced dipole itself. These are much weaker than the permanent dipole / dipole interactions. These forces occur in permanent dipole-molecules, and in mixtures of permanent dipole and dipole free molecules.
  3. Instantaneous dipole / induced dipole: At any specific moment the electron cloud is not necessarily symmetrical, this instantaneous dipole then induces a dipole in another molecule and they are attracted; this is the weakest of all molecular interactions.

A Dipole is caused by an atom or molecule fragment having a higher electronegativity (this is a measure of its effective nuclear charge, and thus the attraction of the nucleus by electrons) than one to which it is attached. This means that it pulls electrons closer to it, and has a higher share of the electrons in the bond. Dipoles can cancel out by symmetry, eg: Carbon dioxide (O=C=O) is linear so there is no dipole, but the charge distribution is asymmetric causing a quadrupole moment (this acts similarly to a dipole, but is much weaker).

Organometallic Compounds and Bonding edit

Organometallic chemistry combines aspects of inorganic chemistry and organic chemistry, because organometallic compounds are chemical compounds containing bonds between carbon and a metal or metalloid element. Organometallic bonds are different from other bonds in that they are not either truly covalent or truly ionic, but each type of metal has individual bond character. Cuprate (copper) compounds, for example, behave quite differently than Grignard reagents (magnesium), and so beginning organic chemists should concentrate on how to use the most basic compounds mechanistically, while leaving the explanation of exactly what occurs at the molecular level until later and more in-depth studies in the subject.

Basic organometallic interactions are discussed fully in a later chapter.

<< Foundational concepts | < Electronegativity | Bonding | Electron dot structures > | Alkanes >>