Describe Newton's method for finding a root of a smooth function
f
:
R
→
R
{\displaystyle f:R\rightarrow R\!\,}
Newton's method:
x
k
+
1
=
x
k
−
f
(
x
k
)
f
′
(
x
k
)
{\displaystyle x_{k+1}=x_{k}-{\frac {f(x_{k})}{f'(x_{k})}}\!\,}
Assume that
f
:
R
→
R
{\displaystyle f:R\rightarrow R\!\,}
is a smooth function, satisfies
f
′
(
x
)
>
0
,
f
″
(
x
)
>
0
,
for all
x
∈
R
{\displaystyle f'(x)>0,\quad f''(x)>0,\quad {\mbox{ for all }}x\in R\!\,}
and has a root
x
∗
{\displaystyle x^{*}\!\,}
. Draw a geometric picture illustrating the convergence of the method and give an analytic proof that Newton's method converges to
x
∗
{\displaystyle x^{*}\!\,}
for any initial guess
x
0
∈
R
{\displaystyle x_{0}\in R\!\,}
From the picture, notice that if
x
k
<
x
∗
{\displaystyle x_{k}<x_{*}\!\,}
, then after one step
x
k
+
1
{\displaystyle x_{k+1}\!\,}
will be greater than
x
∗
{\displaystyle x_{*}\!\,}
. This is because from hypothesis, the function is always increasing and concave up.
Then without loss of generality assume
x
k
>
x
∗
{\displaystyle x_{k}>x_{*}\!\,}
.
Subtracting
x
∗
{\displaystyle x_{*}\!\,}
from both sides of Newton's method gives an expression for the relationship between consecutive errors.
x
k
+
1
−
x
∗
⏟
e
k
+
1
=
x
k
−
x
∗
⏟
e
k
−
f
(
x
k
)
f
′
(
x
k
)
(
∗
)
{\displaystyle \underbrace {x_{k+1}-x_{*}} _{e_{k+1}}=\underbrace {x_{k}-x_{*}} _{e_{k}}-{\frac {f(x_{k})}{f'(x_{k})}}\qquad (*)\!\,}
Expanding
f
(
x
k
)
{\displaystyle f(x_{k})\!\,}
around
f
(
x
∗
)
{\displaystyle f(x_{*})\!\,}
using Taylor expansion gives
f
(
x
k
)
=
f
(
x
∗
)
⏟
0
+
f
′
(
ξ
)
(
x
k
−
x
∗
)
⏟
e
k
{\displaystyle f(x_{k})=\underbrace {f(x_{*})} _{0}+f'(\xi )\underbrace {(x_{k}-x_{*})} _{e_{k}}\!\,}
where
ξ
∈
[
x
∗
,
x
k
]
{\displaystyle \xi \in [x_{*},x_{k}]\!\,}
Substituting this expression into (*), we have
e
k
+
1
=
(
1
−
f
′
(
ξ
)
f
′
(
x
k
)
⏟
M
)
e
k
{\displaystyle e_{k+1}=(1-\underbrace {\frac {f'(\xi )}{f'(x_{k})}} _{M})e_{k}\!\,}
Since
f
′
(
x
)
>
0
{\displaystyle f'(x)>0\!\,}
and is always increasing (from hypothesis),
M
{\displaystyle M\!\,}
is a positive number less than 1. Therefore the error decreases as
k
{\displaystyle k\!\,}
increases which implies the method always converges.
The goal of this problem is to solve the boundary value problem
−
u
″
=
f
on
(
0
,
1
)
,
u
(
0
)
=
0
,
u
(
1
)
=
0
{\displaystyle -u''=f{\mbox{ on }}(0,1),\quad u(0)=0,u(1)=0\!\,}
in a suitable finite element space.
For
N
∈
N
{\displaystyle N\in \mathbb {N} \!\,}
, let
x
i
=
i
/
N
,
i
=
0
,
…
,
N
{\displaystyle x_{i}=i/N,i=0,\ldots ,N\!\,}
. Define a suitable
N
−
1
{\displaystyle N-1\!\,}
dimensional subspace
V
N
{\displaystyle V_{N}\!\,}
in
H
0
1
{\displaystyle H_{0}^{1}\!\,}
associated with the points
x
i
{\displaystyle x_{i}\!\,}
. Let
ϕ
1
,
…
,
ϕ
N
−
1
{\displaystyle \phi _{1},\ldots ,\phi _{N-1}\!\,}
be any basis in
V
N
{\displaystyle V_{N}\!\,}
. Explain how you can determine the coefficients
u
i
{\displaystyle u_{i}\!\,}
in the representation element solution
u
N
=
∑
i
=
1
N
−
1
u
i
ϕ
i
{\displaystyle u_{N}=\sum _{i=1}^{N-1}u_{i}\phi _{i}\!\,}
by solving a linear system. Prove that there exists a unique solution
Define Suitable Subspace
edit
V
N
=
{
v
∈
H
0
1
[
0
,
1
]
:
v
piecewise linear
}
{\displaystyle V_{N}=\{v\in H_{0}^{1}[0,1]:v{\mbox{ piecewise linear}}\}\!\,}
which has a basis the hat functions
{
ϕ
i
}
i
=
1
N
−
1
{\displaystyle \{\phi _{i}\}_{i=1}^{N-1}\!\,}
defined as follows:
ϕ
i
(
x
)
=
{
x
−
x
i
−
1
h
for
x
∈
[
x
i
−
1
,
x
i
]
x
i
+
1
−
x
h
for
x
∈
[
x
i
,
x
i
+
1
]
0
otherwise
{\displaystyle \phi _{i}(x)={\begin{cases}{\frac {x-x_{i-1}}{h}}&{\mbox{ for }}x\in [x_{i-1},x_{i}]\\{\frac {x_{i+1}-x}{h}}&{\mbox{ for }}x\in [x_{i},x_{i+1}]\\0&{\mbox{ otherwise}}\end{cases}}\!\,}
How to Determine Coefficients
edit
The discrete weak variational form is given as such:
Find
u
N
∈
V
N
{\displaystyle u_{N}\in V_{N}\!\,}
such that for all
v
∈
V
N
{\displaystyle v\in V_{N}\!\,}
∫
0
1
u
N
′
v
N
′
⏟
a
(
u
N
,
v
N
)
=
∫
0
1
f
v
N
⏟
F
(
v
N
)
{\displaystyle \underbrace {\int _{0}^{1}u_{N}'v_{N}'} _{a(u_{N},v_{N})}=\underbrace {\int _{0}^{1}fv_{N}} _{F(v_{N})}\!\,}
Since we have a basis
{
ϕ
i
}
i
=
1
N
−
1
{\displaystyle \{\phi _{i}\}_{i=1}^{N-1}\!\,}
, we have a system of equations (that can be expressed in matrix form):
For
j
=
1
,
2
,
…
,
N
−
1
{\displaystyle j=1,2,\ldots ,N-1\!\,}
∑
i
=
1
N
−
1
u
i
∫
0
1
ϕ
i
ϕ
j
=
∫
0
1
f
ϕ
j
{\displaystyle \sum _{i=1}^{N-1}u_{i}\int _{0}^{1}\phi _{i}\phi _{j}=\int _{0}^{1}f\phi _{j}\!\,}
Existence of Unique Solution
edit
The existence of a unique solution follows from Lax-Milgram.
Note the following:
bilinear form continuous (bounded) e.g.
a
(
u
N
,
v
N
)
≤
‖
u
N
‖
1
‖
v
N
‖
1
{\displaystyle a(u_{N},v_{N})\leq \|u_{N}\|_{1}\|v_{N}\|_{1}\!\,}
a
(
u
,
v
)
=
∫
u
′
v
′
≤
|
u
|
1
|
v
|
1
Cauchy Schwartz in L2
≤
‖
u
‖
1
‖
v
‖
1
dominance of spaces
{\displaystyle {\begin{aligned}a(u,v)&=\int u'v'\\&\leq |u|_{1}|v|_{1}{\mbox{ Cauchy Schwartz in L2 }}\\&\leq \|u\|_{1}\|v\|_{1}{\mbox{ dominance of spaces }}\end{aligned}}\!\,}
bilinear form coercive e.g.
a
(
u
N
,
u
N
)
≥
C
‖
u
N
‖
1
2
{\displaystyle a(u_{N},u_{N})\geq C\|u_{N}\|_{1}^{2}\!\,}
a
(
v
,
v
)
=
∫
v
′
2
=
|
v
|
1
2
≥
C
‖
v
‖
1
2
Poincare inequality
{\displaystyle {\begin{aligned}a(v,v)&=\int v'^{2}\\&=|v|_{1}^{2}\\&\geq C\|v\|_{1}^{2}{\mbox{ Poincare inequality}}\end{aligned}}\!\,}
Poincare Inequality:
‖
v
‖
0
≤
‖
v
‖
1
≤
C
|
v
|
1
{\displaystyle \|v\|_{0}\leq \|v\|_{1}\leq C|v|_{1}\!\,}
F
(
v
N
)
≤
C
‖
v
N
‖
1
{\displaystyle F(v_{N})\leq C\|v_{N}\|_{1}\!\,}
∫
f
v
≤
‖
f
‖
0
‖
v
‖
0
≤
‖
f
‖
1
‖
v
‖
1
{\displaystyle {\begin{aligned}\int fv&\leq \|f\|_{0}\|v\|_{0}\\&\leq \|f\|_{1}\|v\|_{1}\end{aligned}}\!\,}
Show that
a
(
u
,
v
)
=
∫
0
1
u
′
v
′
d
x
{\displaystyle a(u,v)=\int _{0}^{1}u'v'dx\!\,}
defines an inner product on
H
0
1
{\displaystyle H_{0}^{1}\!\,}
and thus a notion of orthogonality in
H
0
1
{\displaystyle H_{0}^{1}\!\,}
a
(
u
,
v
)
=
a
(
v
,
u
)
{\displaystyle a(u,v)=a(v,u)\!\,}
a
(
α
u
,
v
)
=
∫
α
u
′
v
′
=
α
∫
u
′
v
′
=
α
a
(
u
,
v
)
{\displaystyle a(\alpha u,v)=\int \alpha u'v'=\alpha \int u'v'=\alpha a(u,v)\!\,}
a
(
u
+
w
,
v
)
=
∫
(
u
′
+
w
′
)
v
′
=
∫
u
′
v
′
+
∫
w
′
v
′
=
a
(
u
,
v
)
+
a
(
w
,
v
)
{\displaystyle a(u+w,v)=\int (u'+w')v'=\int u'v'+\int w'v'=a(u,v)+a(w,v)\!\,}
a
(
u
,
u
)
=
∫
u
′
2
≠
0
if
u
≠
0
{\displaystyle a(u,u)=\int u'^{2}\neq 0{\mbox{ if }}u\neq 0\!\,}
ϕ
1
=
{
2
x
for
x
∈
[
0
,
1
2
]
2
−
2
x
for
x
∈
[
1
2
,
1
]
{\displaystyle \phi _{1}={\begin{cases}2x&{\mbox{ for }}x\in [0,{\frac {1}{2}}]\\2-2x&{\mbox{ for }}x\in [{\frac {1}{2}},1]\end{cases}}\!\,}
ϕ
2
=
{
8
x
for
x
∈
[
0
,
1
4
]
−
8
(
x
−
1
2
)
for
x
∈
[
1
4
,
1
2
]
0
otherwise
{\displaystyle \phi _{2}={\begin{cases}8x&{\mbox{ for }}x\in [0,{\frac {1}{4}}]\\-8(x-{\frac {1}{2}})&{\mbox{ for }}x\in [{\frac {1}{4}},{\frac {1}{2}}]\\0&{\mbox{ otherwise }}\end{cases}}\!\,}
ϕ
3
=
{
8
(
x
−
1
2
)
for
x
∈
[
1
2
,
3
4
]
−
8
(
x
−
1
)
for
x
∈
[
1
4
,
1
]
0
otherwise
{\displaystyle \phi _{3}={\begin{cases}8(x-{\frac {1}{2}})&{\mbox{ for }}x\in [{\frac {1}{2}},{\frac {3}{4}}]\\-8(x-1)&{\mbox{ for }}x\in [{\frac {1}{4}},1]\\0&{\mbox{ otherwise }}\end{cases}}\!\,}
Define a new hat function on each new pair of adjoining subintervals. The hat functions should have all have the same height as the previous basis's hat functions.
What is the structure of the linear system in (a) for this special basis?
For our system in (a), this system yields a diagonal matrix.
For solving the equation
y
′
=
f
(
x
,
y
)
{\displaystyle y'=f(x,y)\!\,}
, consider the scheme
y
n
+
1
=
y
n
+
h
2
(
y
n
′
+
y
n
+
1
′
)
+
h
2
12
(
y
n
″
−
y
n
+
1
″
)
{\displaystyle y_{n+1}=y_{n}+{\frac {h}{2}}(y_{n}'+y'_{n+1})+{\frac {h^{2}}{12}}(y''_{n}-y''_{n+1})\!\,}
where
y
n
′
=
f
(
x
n
,
y
n
)
{\displaystyle y_{n}'=f(x_{n},y_{n})\!\,}
and
y
n
″
=
f
x
(
x
n
,
y
n
)
+
f
(
x
n
,
y
n
)
f
y
(
x
n
,
y
n
)
{\displaystyle y_{n}''=f_{x}(x_{n},y_{n})+f(x_{n},y_{n})f_{y}(x_{n},y_{n})\!\,}
Show that this scheme is fourth-order accurate.
Order
y
(
t
+
h
)
−
y
(
t
)
−
h
2
y
′
(
t
)
−
h
2
y
′
(
t
+
h
)
−
h
2
12
y
″
(
t
)
h
2
12
y
″
(
t
+
h
)
Σ
0
y
(
t
)
−
y
(
t
)
0
0
0
0
0
1
y
′
(
t
)
h
0
−
h
2
y
′
(
t
)
−
h
2
y
′
(
t
)
0
0
0
2
y
″
(
t
)
h
2
2
0
0
−
h
2
y
″
(
t
)
h
−
h
2
12
y
″
(
t
)
h
2
12
y
″
(
t
)
0
3
y
‴
(
t
)
h
3
6
0
0
−
h
2
y
‴
(
t
)
2
h
2
0
h
2
12
y
‴
(
t
)
h
0
4
y
⁗
(
t
)
h
4
24
0
0
−
h
2
y
⁗
(
t
)
h
3
6
0
h
2
12
y
⁗
(
t
)
h
2
2
0
5
O
(
h
5
)
0
0
O
(
h
5
)
0
O
(
h
5
)
O
(
h
5
)
{\displaystyle {\begin{array}{|c|c|c|c|c|c|c|c|}{\mbox{Order}}&y(t+h)&-y(t)&-{\frac {h}{2}}y'(t)&-{\frac {h}{2}}y'(t+h)&-{\frac {h^{2}}{12}}y''(t)&{\frac {h^{2}}{12}}y''(t+h)&\Sigma \\\hline &&&&&&&\\0&y(t)&-y(t)&0&0&0&0&0\\1&y'(t)h&0&-{\frac {h}{2}}y'(t)&-{\frac {h}{2}}y'(t)&0&0&0\\2&{\frac {y''(t)h^{2}}{2}}&0&0&-{\frac {h}{2}}y''(t)h&-{\frac {h^{2}}{12}}y''(t)&{\frac {h^{2}}{12}}y''(t)&0\\3&{\frac {y'''(t)h^{3}}{6}}&0&0&-{\frac {h}{2}}{\frac {y'''(t)}{2}}h^{2}&0&{\frac {h^{2}}{12}}y'''(t)h&0\\4&y''''(t){\frac {h^{4}}{24}}&0&0&-{\frac {h}{2}}y''''(t){\frac {h^{3}}{6}}&0&{\frac {h^{2}}{12}}y''''(t){\frac {h^{2}}{2}}&0\\5&O(h^{5})&0&0&O(h^{5})&0&O(h^{5})&O(h^{5})\\\hline \end{array}}}
For stability analysis, one takes
f
(
x
,
y
)
=
λ
y
{\displaystyle f(x,y)=\lambda y\!\,}
. State what it means for
λ
¯
=
h
λ
{\displaystyle {\overline {\lambda }}=h\lambda \!\,}
to belong to the region of absolute stability for this scheme, and show that the region of absolute stability contains the entire negative real axis.
y
n
″
=
d
d
x
λ
y
+
λ
y
d
d
y
λ
y
=
λ
2
y
{\displaystyle y_{n}''={\frac {d}{dx}}\lambda y+\lambda y{\frac {d}{dy}}\lambda y=\lambda ^{2}y\!\,}
y
n
+
1
=
y
n
+
h
2
λ
y
n
+
h
2
λ
y
n
+
1
+
h
2
12
[
λ
2
y
n
−
λ
2
y
n
+
1
]
{\displaystyle y_{n+1}=y_{n}+{\frac {h}{2}}\lambda y_{n}+{\frac {h}{2}}\lambda y_{n+1}+{\frac {h^{2}}{12}}[\lambda ^{2}y_{n}-\lambda ^{2}y_{n+1}]\!\,}
Letting
z
=
h
λ
{\displaystyle z=h\lambda \!\,}
and rearranging terms gives
y
n
+
1
=
(
1
+
z
2
+
z
2
12
1
−
z
2
+
z
2
12
)
⏟
M
y
n
{\displaystyle y_{n+1}=\underbrace {\left({\frac {1+{\frac {z}{2}}+{\frac {z^{2}}{12}}}{1-{\frac {z}{2}}+{\frac {z^{2}}{12}}}}\right)} _{M}y_{n}\!\,}
If
z
{\displaystyle z\!\,}
is a negative real number, then
M
<
1
{\displaystyle M<1\!\,}