# Nuclear Physics/Change of isotope composition of natural uranium

Natural uranium consists of three isotopes. These are uranium234, uranium235 and Uranium238. Hereby is uranium234 a decay product of uranium238, whose concentration is in a fix relation to uranium238. The concentration of uranium235 is independent of the content of uranium238. As uranium238 and uranium235 decay with different speed, the isotope composition of natural uranium changes by time.

This has drastical consequences:

2 billion years ago in Oklo in today's Gabun, there was a natural reactor moderated by normal water. At those days natural uranium consisted of 3% uranium 235, this is the same concentration as in nuclear fuel for boiling water reactors in power plants.

Today natural uranium has only a uranium 235 concentration of 0.72 %. A chain reaction in normal water is impossible. Usage of heavy water or enrichment of uranium 235 is required.

Should there exist in a few billion years, before the sun gets a red giant, intelligent life in our solar system, it will have great problems to exploit nuclear fission, as concentration of uranium235 will be very low.

The development of isotope composition can be calculated as described below:

Lot of uranium235 in dependence of time t

${\displaystyle p(Uranium235)*0.5^{\frac {t}{HalfLifeTimeU235}}}$

Lot of uranium238 in dependence of time t

${\displaystyle p(Uranium238)*0.5^{\frac {t}{HalfLifeTimeU238}}}$

Lot of uranium234 in dependence of time t

${\displaystyle p(Uranium238)*{\frac {HalfLifeTimeU234}{HalfLifeTimeU238}}*(0.5^{\frac {t}{HalfLifeTimeU238}})}$

The following table contains the values for frequency and half-life time of natural uranium isotopes

Isotope Frequency Half Life Time
Uranium238 (U238) 99.27390 % 4510000000 years
Uranium235 (U235) 0.7205 % 710000000 years
Uranium234 (U234) 0.0056 % 254000 years

Concentration of uranium235 at time t

${\displaystyle p(Uranium235)(t)={\frac {p(Uranium235)*0.5^{\frac {t}{HalfLifeTimeU235}}}{p(Uranium235)*0.5^{\frac {t}{HalfLifeTimeU235}}+p(Uranium238)*0.5^{\frac {t}{HalfLifeTimeU238}}+p(Uranium238)*{\frac {HalfLifeTimeU234}{HalfLifeTimeU238}}*(0.5^{\frac {t}{HalfLifeTimeU238}})}}}$

Concentration of uranium238 at time t

${\displaystyle p(Uranium238)(t)={\frac {p(Uranium238)*0.5^{\frac {t}{HalfLifeTimeU238}}}{p(Uranium235)*0.5^{\frac {t}{HalfLifeTimeU235}}+p(Uranium238)*0.5^{\frac {t}{HalfLifeTimeU238}}+p(Uranium238)*{\frac {HalfLifeTimeU234}{HalfLifeTimeU238}}*(0.5^{\frac {t}{HalfLifeTimeU238}})}}}$

Concentration of uranium234 at time t

${\displaystyle p(Uranium234)(t)={\frac {p(Uranium238)*{\frac {HalfLifeTimeU234}{HalfLifeTimeU238}}*(0.5^{\frac {t}{HalfLifeTimeU238}})}{p(Uranium235)*0.5^{\frac {t}{HalfLifeTimeU235}}+p(Uranium238)*0.5^{\frac {t}{HalfLifeTimeU238}}+p(Uranium238)*{\frac {HalfLifeTimeU234}{HalfLifeTimeU238}}*(0.5^{\frac {t}{HalfLifeTimeU238}})}}}$

Composition of natural uranium as function of time

Time (Million years) Uranium 238 Uranium 235 Uranium 234
-5000 69.26852 % 30.72757 % 0.00391 %
-4500 77.27535 % 22.72029 % 0.00436 %
-4000 83.68689 % 16.30839 % 0.00472 %
-3500 88.55684 % 11.43817 % 0.00500 %
-3000 92.10948 % 7.88532 % 0.00520 %
-2500 94.62553 % 5.36913 % 0.00534 %
-2000 96.37030 % 3.62426 % 0.00544 %
-1500 97.56263 % 2.43187 % 0.00550 %
-1000 98.36929 % 1.62516 % 0.00555 %
-500 98.91133 % 1.08309 % 0.00558 %
today 99.27390 % 0.72050 % 0.00560 %
500 99.51568 % 0.47871 % 0.00561 %
1000 99.67658 % 0.31780 % 0.00562 %
1500 99.78351 % 0.21086 % 0.00563 %
2000 99.85451 % 0.13986 % 0.00563 %
2500 99.90162 % 0.09274 % 0.00564 %
3000 99.93287 % 0.06149 % 0.00564 %
3500 99.95360 % 0.04076 % 0.00564 %
4000 99.96734 % 0.02702 % 0.00564 %
4500 99.97645 % 0.01791 % 0.00564 %
5000 99.98249 % 0.01187 % 0.00564 %