Velocity of the Particle
edit
(1 ) is a first order linear differential equation and can be solved formally to give (2 ).
v
(
t
)
=
v
0
e
−
ϵ
t
+
e
−
ϵ
t
∫
1
3
e
ϵ
t
′
A
(
t
′
)
d
t
′
{\displaystyle v(t)=v_{0}e^{-\epsilon t}+e^{-\epsilon t}\int \limits _{1}^{3}e^{\epsilon t^{'}}A(t^{'})dt^{'}}
2 [ 1]
The ensemble average of velocity is,
⟨
v
(
t
)
⟩
=
v
0
e
−
ϵ
t
{\displaystyle \langle v(t)\rangle =v_{0}e^{-\epsilon t}}
This is because the acceleration of the particle is due to a random force, and so the average acceleration will be 0 (i.e.,
⟨
A
(
t
)
⟩
=
0
{\displaystyle \langle A(t)\rangle =0}
).
At short time intervals (
t
⟶
0
{\displaystyle t\longrightarrow 0}
), the average velocity becomes,
⟨
v
(
t
)
⟩
=
v
0
e
−
ϵ
0
=
v
0
{\displaystyle \langle v(t)\rangle =v_{0}e^{-\epsilon 0}=v_{0}}
At long time intervals (
t
⟶
∞
{\displaystyle t\longrightarrow \infty }
), the average velocity becomes,
⟨
v
(
t
)
⟩
=
v
0
e
−
ϵ
∞
=
0
{\displaystyle \langle v(t)\rangle =v_{0}e^{-\epsilon \infty }=0}
Displacement of the Particle
edit
The Langevin Equation is used to express the rate of change of a particle's velocity. This in turn can be used to calculate the diffusion as diffusion depends on the velocity of a particle in a liquid. The Langevin equation can be used to sample the canonical ensembles of states. By integrating the velocity from time 0 to time t, the displacement of a particle can be found.[ 1]
r
(
t
)
−
r
(
0
)
=
∫
0
t
v
(
t
″
)
d
t
″
{\displaystyle r(t)-r(0)=\int \limits _{0}^{t}v(t^{''})dt^{''}}
3
Substituting the definition for velocity from (2 ) into (3 ),and integrating by parts gives
r
(
t
)
−
r
(
0
)
=
1
ϵ
∫
0
t
[
1
−
e
ϵ
(
t
′
−
t
)
]
A
(
t
′
)
d
t
′
+
v
0
1
−
e
−
ϵ
t
ϵ
{\displaystyle r(t)-r(0)={\frac {1}{\epsilon }}\int \limits _{0}^{t}[1-e^{\epsilon (t^{'}-t)}]A(t^{'})dt^{'}+v_{0}{\frac {1-e^{-\epsilon t}}{\epsilon }}}
4
Squaring both sides of (4 ) and taking the ensemble average gives
⟨
|
r
(
t
)
−
r
(
0
)
|
2
⟩
=
v
0
2
(
1
−
e
−
ϵ
t
)
2
ϵ
2
+
3
k
B
T
m
ϵ
2
(
2
ϵ
t
−
3
+
4
e
−
ϵ
t
−
e
−
2
ϵ
t
)
{\displaystyle \langle |r(t)-r(0)|^{2}\rangle ={\frac {v_{0}^{2}(1-e^{-\epsilon t})^{2}}{\epsilon ^{2}}}+{\frac {3k_{B}T}{m\epsilon ^{2}}}(2\epsilon t-3+4e^{-\epsilon t}-e^{-2\epsilon t})}
5 [ 1]
The derivation is as follows,
⟨
|
r
(
t
)
−
r
(
0
)
|
2
⟩
=
v
0
2
(
1
−
e
−
ϵ
t
)
2
ϵ
2
+
1
ϵ
2
∫
0
t
∫
0
t
[
1
−
e
−
ϵ
(
t
−
t
′
)
]
2
⟨
A
(
t
″
)
A
(
t
′
)
⟩
d
t
″
d
t
′
{\displaystyle \langle |r(t)-r(0)|^{2}\rangle ={\frac {v_{0}^{2}(1-e^{-\epsilon t})^{2}}{\epsilon ^{2}}}+{\frac {1}{\epsilon ^{2}}}\int \limits _{0}^{t}\int \limits _{0}^{t}[1-e^{-\epsilon (t-t^{'})}]^{2}\langle A(t^{''})A(t^{'})\rangle dt^{''}dt^{'}}
⟨
A
(
t
″
)
A
(
t
′
)
⟩
{\displaystyle \langle A(t^{''})A(t^{'})\rangle }
is a rapidly varying function of
|
t
′
−
t
″
|
{\displaystyle \left|t^{'}-t^{''}\right|}
only and it is non zero only when
|
t
′
−
t
″
|
{\displaystyle \left|t^{'}-t^{''}\right|}
is small. So
⟨
A
(
t
″
)
A
(
t
′
)
⟩
{\displaystyle \langle A(t^{''})A(t^{'})\rangle }
can be re-written as
ϕ
|
t
′
−
t
″
|
{\displaystyle \phi \left|t^{'}-t^{''}\right|}
.[ 1] Let
t
′
−
t
″
=
y
{\displaystyle t^{'}-t^{''}=y}
and
t
−
t
′
=
x
{\displaystyle t-t^{'}=x}
, and the above equation becomes,
⟨
|
r
(
t
)
−
r
(
0
)
|
2
⟩
=
v
0
2
(
1
−
e
−
ϵ
t
)
2
ϵ
2
+
1
ϵ
2
2
ϵ
e
−
ϵ
t
−
1
ϵ
2
∫
0
2
t
[
1
−
e
−
ϵ
x
]
2
d
x
∫
0
∞
ϕ
|
y
|
d
y
{\displaystyle \langle |r(t)-r(0)|^{2}\rangle ={\frac {v_{0}^{2}(1-e^{-\epsilon t})^{2}}{\epsilon ^{2}}}+{\frac {1}{\epsilon ^{2}}}{\frac {2}{\epsilon }}e^{-\epsilon t}-{\frac {1}{\epsilon ^{2}}}\int \limits _{0}^{2t}[1-e^{-\epsilon x}]^{2}dx\int \limits _{0}^{\infty }\phi |y|dy}
Let
∫
0
∞
ϕ
|
y
|
d
y
=
τ
{\displaystyle \int \limits _{0}^{\infty }\phi |y|dy=\tau }
, and simplify, the above equation becomes
⟨
|
r
(
t
)
−
r
(
0
)
|
2
⟩
=
v
0
2
(
1
−
e
−
ϵ
t
)
2
ϵ
2
+
τ
ϵ
2
(
2
ϵ
t
−
3
+
4
e
−
ϵ
t
−
e
−
2
ϵ
t
)
{\displaystyle \langle |r(t)-r(0)|^{2}\rangle ={\frac {v_{0}^{2}(1-e^{-\epsilon t})^{2}}{\epsilon ^{2}}}+{\frac {\tau }{\epsilon ^{2}}}(2\epsilon t-3+4e^{-\epsilon t}-e^{-2\epsilon t})}
Equipartition theory applies when
t
⟶
∞
{\displaystyle t\longrightarrow \infty }
, and so
τ
=
3
k
B
T
m
{\displaystyle \tau ={\frac {3k_{B}T}{m}}}
, and the above equation becomes (5 ).[ 1]
At short time intervals (
t
⟶
0
{\displaystyle t\longrightarrow 0}
) the part of the equation representing Brownian motion goes to zero ( i.e.
3
k
B
T
m
ϵ
2
(
2
ϵ
t
−
3
+
4
e
−
ϵ
t
−
e
−
2
ϵ
t
)
=
0
{\displaystyle {\frac {3k_{B}T}{m\epsilon ^{2}}}(2\epsilon t-3+4e^{-\epsilon t}-e^{-2\epsilon t})=0}
⟨
|
r
(
t
)
−
r
(
0
)
|
2
⟩
=
v
0
2
(
1
−
e
−
ϵ
t
)
2
ϵ
2
{\displaystyle \langle |r(t)-r(0)|^{2}\rangle ={\frac {v_{0}^{2}(1-e^{-\epsilon t})^{2}}{\epsilon ^{2}}}}
Let
e
−
ϵ
t
=
1
−
ϵ
t
{\displaystyle e^{-\epsilon t}=1-\epsilon t}
. Then,
⟨
|
r
(
t
)
−
r
(
0
)
|
2
⟩
=
v
0
2
ϵ
2
(
1
−
1
+
ϵ
t
)
2
{\displaystyle \langle |r(t)-r(0)|^{2}\rangle ={\frac {v_{0}^{2}}{\epsilon ^{2}}}(1-1+\epsilon t)^{2}}
6
⟨
|
r
(
t
)
−
r
(
0
)
|
2
⟩
=
v
0
2
t
2
{\displaystyle \langle |r(t)-r(0)|^{2}\rangle =v_{0}^{2}t^{2}}
This corresponds to ballistic motion of the particle.[ 1] At short time scales, the effect of friction and collisions have not affected the movement of the particle.
At long time intervals (
t
⟶
∞
{\displaystyle t\longrightarrow \infty }
), the velocity of the particle goes to zero.
⟨
|
r
(
t
)
−
r
(
0
)
|
2
⟩
=
3
k
B
T
m
ϵ
2
(
2
ϵ
t
−
3
+
4
e
−
ϵ
t
−
e
−
2
ϵ
t
)
{\displaystyle \langle |r(t)-r(0)|^{2}\rangle ={\frac {3k_{B}T}{m\epsilon ^{2}}}(2\epsilon t-3+4e^{-\epsilon t}-e^{-2\epsilon t})}
At large values of t
2
ϵ
t
>>
4
e
−
ϵ
t
and
−
e
−
2
ϵ
t
{\displaystyle 2\epsilon t>>4e^{-\epsilon t}{\text{and}}-e^{-2\epsilon t}}
and so,
⟨
|
r
(
t
)
−
r
(
0
)
|
2
⟩
=
3
k
B
T
m
ϵ
2
(
2
ϵ
t
)
=
6
k
B
T
m
ϵ
t
{\displaystyle \langle |r(t)-r(0)|^{2}\rangle ={\frac {3k_{B}T}{m\epsilon ^{2}}}(2\epsilon t)={\frac {6k_{B}T}{m\epsilon }}t}
The diffusion constant D, is equal to
k
B
T
m
ϵ
{\displaystyle {\frac {k_{B}T}{m\epsilon }}}
.[ 1]
⟨
|
r
(
t
)
−
r
(
0
)
|
2
⟩
=
6
D
t
{\displaystyle \langle |r(t)-r(0)|^{2}\rangle =6Dt}
7
This corresponds to the particle undergoing a random walk.[ 1]