Microtechnology/Semiconductors
Semiconductors
edit
Physical Semiconductor Properties Overview Table
editElement or Compound | Name | Crystal Structure | Symmetry Group | Lattice Constant (A) at 300 K | Band Gap (ev) at 300 K | Band | Number of 1022 atoms cm-3 | Density / g cm-3 |
IV | ||||||||
C | Carbon (diamond) | D | ? | 3.56683 | 5.47 | I | ? | ? |
C | Graphite | ? | ? | ? | semimetal | ? | ? | ? |
C | Nanotube | ? | ? | ? | prop. to 1/Ø[nm] | ? | ? | ? |
Ge | Germanium | D | Oh7- Fd3m | 5.64613 | 0.66 | I | 4.4 | 5.3234 |
Si | Silicon | D | Oh7-Fd3m | 5.43095 | 1.12 | I | 5 | 2.329 |
Sn | Tin | ? | ? | ? | metal | ? | ? | ? |
Sn | Grey Tin | D | ? | 6.4892 | 0 | D | ? | ? |
IV-IV | ||||||||
SiC | Silicon carbide | W | ? | a = 3.086 and c= 15.117 | 2.996 | I | ? | ? |
III-V | ||||||||
AlAs | Aluminum arsenide | Z | Td2-F43m[1] | 5.6605 | 2.16 | I | ? | 3.717[1] |
AlP | Aluminum phosphide | Z | Td2-F43m[1] | 5.451 | 2.45 | I[1] | ? | ? |
AlSb | Aluminum antimonide | Z | Td2-F43m[1] | 6.1355 | 1.58 | I | ? | 4.29[1] |
BN | Boron nitride | Z | ? | 3.615 | ~7.5 | I | ? | ? |
BP | Boron phosphide | Z | ? | 4.538 | 2 | ? | ? | ? |
GaAs | Gallium arsenide | Z | Td2-F43m[1] | 5.65325 | 1.42 | D | 4.42 | 5.32 |
GaN | Gallium nitride | W | ? | a = 3.189 and c = 5.185 | 3.36 | ? | ? | ? |
GaP | Gallium phosphide | Z | Td2-F43m[1] | 5.4512 | 2.26 | I | 4.94 | 4.14 |
GaSb | Gallium antimonide | Z | Td2-F43m[1] | 6.09593 | 0.72 | D | 3.53 | 5.61 |
InAs | Indium arsenide | Z | Td2-F43m[1] | 6.0584 | 0.36 | D | 3.59 | 5.68 |
InP | Indium phosphide | Z | Td2-F43m[1] | 5.8686 | 1.35 | D | 3.96 | 4.81 |
InSb | Indium antimonide | Z | Td2-F43m[1] | 6.4794 | 0.17 | D | 2.94 | 5.77 |
AlxGa1-xAs | ? | ? | Td2-F43m | 5.6533+0.0078x | ? | ? | (4.42-0.17x) | 5.32-1.56x |
GaAsSbx | ? | ? | Td2-F43m | ? | ? | ? | (4.42-0.89x) | (5.32 + 0.29x) |
II-VI | ||||||||
CdS | Cadmium sulfide | Z | ? | 5.832 | 2.42 | D | ? | ? |
CdS | Cadmium sulfide | W | ? | a = 4.16 and c = 6.756 | 2.42 | D | ? | ? |
CdSe | Cadmium selenide | Z | ? | 6.05 | 1.7 | D | ? | ? |
CdTe | Cadmium telluride | Z | ? | 6.482 | 1.56 | D | ? | ? |
ZnO | Zinc oxide | R | ? | 4.58 | 3.35 | D | ? | ? |
ZnS | Zinc sulfide | Z | ? | 5.42 | 3.68 | D | ? | ? |
ZnS | Zinc sulfide | W | ? | a = 3.82 and c = 6.26 | 3.68 | D | ? | ? |
ZnSe | Zinc selenide | Z | ? | 5.668 | 2.71 | D | ? | ? |
ZnTe | Zinc telluride | Z | ? | 6.103 | 2.393 | D | ? | ? |
IV-VI | ||||||||
PbS | Lead sulfide | R | ? | 5.9362 | 0.41 | I | ? | ? |
PbSe | Lead selenide | R | ? | 6.126 | 0.27 | I | ? | ? |
PbTe | Lead telluride | R | ? | 6.462 | 0.31 | D | ? | ? |
- D = Diamond
- W = Wurzite
- Z = Zincblende
- R = Rock Salt
- I = Indirect
- D = Direct
- At ~ 2K
Some data from [2]
Electronic Semiconductor Properties Overview Table
editElement or Compound | Name | Debye temperature /K | Dielectric constant (static) | Dielectric constant high frequency (static) | Electron affinity / eV | Optical phonon energy / eV | Effective electron mass me/mo | Effective electron mass ml/mo | Effective hole masses mh/mo | Effective hole masses mlp/mo | Effective hole masses ml | Effective electron mass mt/mo | Conductivity effective mass mcc | Density-of-states electron mass mcd | Auger recombination coefficient Cn | Auger recombination coefficient Cp | de Broglie electron wavelength | Auger recombination coefficient |
IV | ||||||||||||||||||
C | Carbon (diamond) | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
C | Graphite | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
C | Nanotube | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
Ge | Germanium | 374 | 16.2 | ? | 4 | 0.037 | 0.08 | 1.6 | 0.33 | 0.043 | ? | ? | ? | ? | 10-30 cm6/s | ? | ? | ? |
Si | Silicon | 640 | 11.7 | ? | 4.05 | 0.063 | 0.19 | 0.98 | 0.49 | 0.16 | ? | ? | ? | ? | 1.1·10-30 cm6 s-1 | 3·10-31cm6 s-1 | ? | ? |
Sn | Tin | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
Sn | Grey Tin | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
IV-IV | ||||||||||||||||||
SiC | Silicon carbide | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
III-V | ||||||||||||||||||
AlAs | Aluminum arsenide | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
AlP | Aluminum phosphide | ? | 9.8[3] | 7.5[4] | ? | ? | ? | 3.67[5] | 0.513[6] | 0.211[6] | ? | 0.212[5] | ? | ? | ? | ? | ? | ? |
AlSb | Aluminum antimonide | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
BN | Boron nitride | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
BP | Boron phosphide | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
GaAs | Gallium arsenide | 360 | 12.9 | 10.89 | 4.07 | 0.035 | 0.063 | ? | 0.51 | 0.082 | ? | ? | ? | ? | ? | ? | 240 | ? |
GaN | Gallium nitride | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
GaP | Gallium phosphide | 445 | 11.1 | 9.11 | 3.8 | 0.051 | ? | 1.12 | 0.79 | 0.14 | ? | 0.22 | ? | ? | ? | ? | ? | 10-30 cm6/s |
GaSb | Gallium antimonide | 266 | 15.7 | 14.4 | 4.06 | 0.0297 | 0.041 | ? | 0.4 | 0.05 | ? | ? | ? | ? | ? | ? | ? | ? |
InAs | Indium arsenide | 280 | 15.15 | 12.3 | 4.9 | 0.03 | 0.023 | ? | 0.41 | 0.026 | ? | ? | ? | ? | ? | ? | 400 | ? |
InP | Indium phosphide | 425 | 12.5 | 9.61 | 4.38 | 0.043 | 0.08 | ? | 0.6 | 0.089 | ? | ? | ? | ? | ? | ? | ? | ? |
InSb | Indium antimonide | 160 | 16.8 | 15.7 | 4.59 | 0.025 | 0.014 | ? | 0.43 | 0.015 | ? | ? | ? | ? | ? | ? | ? | ? |
AlxGa1-xAs | ? | 370 + 54x + 22x^2 | 12.90 - 2.84x | 10.89 - 2.73x | 4.07 - 1.1x (x<0.45) and 3.64 - 0.14x (x>0.45) | 36.25 + 1.83x + 17.12x^2 - 5.11x^3 meV | 0.063 + 0.083x (x<0.45) | ? | 0.51 + 0.25x | 0.082 + 0.068x | ? | ? | 0.26 (x>0.45) | 0.85 - 0.14x (x>0.45) | ? | ? | ? | ? |
GaAsSbx | ? | ? | 12.90 + 2.8x | 10.89 + 3.51x | 4.07 | ? | 0.063 - 0.0495x + 0.0258x^2 | ? | 0.51 - 0.11x | ? | 0.082 - 0.032x | ? | ? | ? | ? | ? | ? | ? |
II-VI | ||||||||||||||||||
CdS | Cadmium sulfide | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
CdSe | Cadmium selenide | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
CdTe | Cadmium telluride | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
ZnO | Zinc oxide | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
ZnS | Zinc sulfide | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
ZnSe | Zinc selenide | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
ZnTe | Zinc telluride | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
IV-VI | ||||||||||||||||||
PbS | Lead sulfide | ? | ? | ? | ? | ? | 3.5[7] | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
PbSe | Lead selenide | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
PbTe | Lead telluride | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
- D = Diamond
- W = Wurzite
- Z = Zincblende
- R = Rock Salt
- I = Indirect
- D = Direct
- At ~ 2K
Some data from [8]
Silicon
editThe traditional material for microfabrication is silicon and a wealth of processes have been developed to work with silicon wafers.
There are several different silicon crystal orientations as well as polycrystalline silicon (often called polysilicon) to choose between, and these orientations all have their own material parameters.
The Young’s modulus, Poisson’s ratio, and shear modulus are transversely and vertically isotropic for Si111 whereas these vary significantly for Si100 and Si110 [9] [10].
Youngs modulus for polysilicon has values within that of crystalline silicon [11], which indicates that it is not affected by the grain boundaries, but is highly dependent on crystal orientation as well as the intrinsic stress [12].
Bulk shear modulus (which governs torsional motion) varies minimally on silicon (111), with respect to crystallographic directions, as compared to silicon (100) and (110)[13].
It should be kept in mind that the values of Young’s modulus for microstructures are very much dependent on the size of the structure [14]
Silicon is a nonlinear material, where the material parameters such as thermal coefficient of expansion, conductivity, and piezoresistivity all depend on the temperature. Care must be taken when modelling the behaviour devices with a wide temperature variation.
Silicon Material Properties Overview Table
edit- Extensive properties listing on [1] with "Resistivity & Mobility Calculator for Silicon Substrates"
Orientation | References | Dopant | Young's Modulus[GPa] | Poisson's ratio | Shear modulus [GPa] | Thermal expansion [10-6] | El. Resistivity [nΩ·m] | Therm. Cond.[W·m−1·K−1] | Piezores gauge factor | Notes |
---|---|---|---|---|---|---|---|---|---|---|
Si 100 | [13] | ? | 130.2-187.5 | 0.064-0.361 | 50.92-79.4 | Therm exp | El cond | Therm cond | PZgauge | |
Silicon 110 | [13] | ? | 130.2-187.5 | 0.064-0.361 | 50.92-79.4 | 2.5-4.5 | El cond | Therm cond | -52.7 to 121.3 | |
Silicon 111 | [13] | ? | 168.9 | 0.262 (parallel to the 111 plane)
0.182 (perpendicular to the 111 plane) |
66.9 GPa (parallel to the 111 plane)
47.8 GPa (perpendicular to the 111 plane) |
2.5-4.5 | El cond | Therm cond | -14.1 to 175.8 | |
Polysilicon | [16] | ? | 130-169 | Around 0.066-0.22 | 52-80 | 2.9 | El cond | Therm cond | -10 to 30 | |
Gold | [17] | none | 78 | 0.44 | 27 | 14.2 | 22.14 | 318 | 4.48 |
This table indicates that Si 111 is an attractive material compared to other Si crystal orientations when only considering the mechanical properties, because it is providing a rigid structure by the high Young’s modulus, low Poisson’s ratio, high shear modulus and also the simplest because it is transversely and vertically isotropic.
Polycrystalline Silicon
editIV Semiconductors
editOf the IV group elements C,Si,Ge,Sn,Pb; Si and Ge are considered semiconductors although graphite,a allotropic form of carbon is conducting but its conductivity is too high than the standard semiconductors.So,it is like the metal.
III-V Semiconductors
editIII-V | Bulk Modulus GPa | Youngs Mod. GPa | Shear Modulus GPa | Density g/cm³ | Ref |
GaAs | 75.3 | Yo[100]= 85.9 | C'= 32.85 | 5.317 | [2] |
GaN | 210 (W) 204 (Z) | 181 | 67 | 6.15 | [3] |
GaP | 88 | Yo[100]= 103 | C' = 39.2 | 4.138 | [4] |
InAs | 58 | Yo[100]= 51.4 | C'= 19.0 | 5.68 | [5] |
InP | 71 | Yo[100]= 61.1 | C'= 22.5 | 4.81 | [6] |
Units
- 1 N = 10^5 dyn
- 1 GPa= 10^9 N /m2= 10^9+5dyn/m2= 10^9+5-4 dyn cm-2=10^10 dyn/cm2
- 1 g/cm3 = 1 kg/L = 1000 kg/m3
II-VI Semiconductors
editReferences
editSee also notes on editing this book about how to add references Microtechnology/About#How to Contribute.
- ↑ a b c d e f g h i j k l http://www.semiconductors.co.uk/propiiiv5653.htm
- ↑ http://www.ioffe.ru/SVA/NSM/Semicond/index.html
- ↑ http://www.semiconductors.co.uk/propiiiv5653.htm
- ↑ S. Z. Beer, J. F. Jackovitz, D.W. Feldman and J.H. Parker Jr., "Raman and infrared active modes of aluminium phosphide", Physics Letters A Volume 26, Issue 7, Pages 331-332 (1968); doi:10.1016/0375-9601(68)90680-4
- ↑ a b I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, "Band parameters for III–V compound semiconductors and their alloys", J. Appl. Phys. 89, 5815 (2001); doi:10.1063/1.1368156
- ↑ a b Ming-Zhu Huang, and W.Y. Chinga, "A minimal basis semi-ab initio approach to the band structures of semiconductors", J. Phys. Chem. Solids 46 (1985) 977, DOI:10.1016/0022-3697(85)90101-5
- ↑ Artamonov, O. M.; Dmitrieva, O. G.; Samarin, S. N.; Yakovlev, I. I., Investigation of unoccupied electron states and determination of the electron affinity of PbS (100) by inverse photoemission spectroscopy, Semiconductors, Volume 27, Issue 10, October 1993, pp.955-957
- ↑ http://www.ioffe.ru/SVA/NSM/Semicond/index.html
- ↑ J. J. Wortman and R. A. Evans, “Young’s modulus, shear modulus, and Poissons ratio in silicon and germanium”, J. Appl. Phys., Vol. 36, 153-156 (1965).
- ↑ W. A. Brantley, “Calculated eleastic constants for stress problems associated with semiconductor devices”, J. Appl. Phys., vol. 44, 534-535 (1973).
- ↑ D. Maier-Schneider, J. Mansour, E. Oberheimer, D. Schneider, „Variation in Young’s Modulus and intrinsic stress of LPCVD-polysilicon due tohigh temperature annealing“, J. Micromech. Microeng. 3, 121-124 (1995).
- ↑ P. J. French, “Polysilicon: a versatile material for microsystems”, Sensors and Actuators A 99 (2002), 3-12
- ↑ a b c d J. Kim, D. Cho and R. S. Muller, “Why is (111) silicon a better mechanical material for MEMS?”, TRANSDUCERS '01. EUROSENSORS XV, vol.1, 662-665 (2001).
- ↑ W. N. Sharpe, K. M. Jackson, K. J. Hemker, and Z. Xie, “Effect of Specimen Size in Young’s Modulus and Fracture Strength of Polysilicon”, J. Microeletromechanical Systems, vol. 10, no. 2, 317-326 (2001).
- ↑ a b c V. M. Glazov and A. S. Pshinkin, ”The Thermophysical Properties (Heat Capacity and Thermal Expansion) of Single Crystal Silicon”, Springer New York, 2001. ISBN 0018-151X.
- ↑ C. S. Pan and W. Hsu, “An electro-thermally and laterally driven polysilicon microactuator”, J. Micromech. Microeng., vol 7, 7-13 (1997)
- ↑ Wikipedia: gold