Recall that an
L
p
{\displaystyle {\mathcal {L}}^{p}}
space is defined as
L
p
(
X
)
=
{
f
:
X
→
C
:
f
is measurable,
∫
X
|
f
|
p
d
μ
<
∞
}
{\displaystyle {\mathcal {L}}^{p}(X)=\{f:X\to \mathbb {C} :f{\text{ is measurable,}}\int _{X}|f|^{p}d\mu <\infty \}}
Let
(
X
,
Σ
,
μ
)
{\displaystyle (X,\Sigma ,\mu )}
be a probability measure space.
Let
f
:
X
→
R
{\displaystyle f:X\to \mathbb {R} }
,
f
∈
L
1
{\displaystyle f\in {\mathcal {L}}^{1}}
be such that there exist
a
,
b
∈
R
{\displaystyle a,b\in \mathbb {R} }
with
a
<
f
(
x
)
<
b
{\displaystyle a<f(x)<b}
If
ϕ
{\displaystyle \phi }
is a convex function on
(
a
,
b
)
{\displaystyle (a,b)}
then,
ϕ
(
∫
X
f
d
μ
)
≤
∫
X
ϕ
∘
f
d
μ
{\displaystyle \displaystyle \phi \left(\int _{X}fd\mu \right)\leq \int _{X}\phi \circ fd\mu }
Proof
Let
t
=
∫
X
f
d
μ
{\displaystyle t=\displaystyle \int _{X}fd\mu }
. As
μ
{\displaystyle \mu }
is a probability measure,
a
<
t
<
b
{\displaystyle a<t<b}
Let
β
=
sup
{
ϕ
(
t
)
−
ϕ
(
s
)
t
−
s
:
a
<
s
<
t
<
b
}
{\displaystyle \beta =\sup\{{\frac {\phi (t)-\phi (s)}{t-s}}:a<s<t<b\}}
Let
t
<
u
<
b
{\displaystyle t<u<b}
; then
β
≤
ϕ
(
u
)
−
ϕ
(
t
)
u
−
t
{\displaystyle \beta \leq \displaystyle {\frac {\phi (u)-\phi (t)}{u-t}}}
Thus,
ϕ
(
t
)
−
ϕ
(
s
)
t
−
s
≤
ϕ
(
u
)
−
ϕ
(
t
)
u
−
t
{\displaystyle \displaystyle {\frac {\phi (t)-\phi (s)}{t-s}}\leq {\frac {\phi (u)-\phi (t)}{u-t}}}
, that is
ϕ
(
t
)
−
ϕ
(
s
)
≤
β
(
t
−
s
)
{\displaystyle \phi (t)-\phi (s)\leq \beta (t-s)}
Put
s
=
f
(
x
)
{\displaystyle s=f(x)}
ϕ
(
∫
X
f
d
μ
)
−
ϕ
f
(
x
)
≤
β
(
f
(
x
)
−
∫
X
f
d
μ
)
{\displaystyle \phi \left(\int _{X}fd\mu \right)-\phi f(x)\leq \beta \left(f(x)-\int _{X}fd\mu \right)}
, which completes the proof.
Putting
ϕ
(
x
)
=
e
x
{\displaystyle \phi (x)=e^{x}}
,
e
(
∫
X
f
d
μ
)
≤
∫
X
e
f
d
μ
{\displaystyle \displaystyle e^{(\int _{X}fd\mu )}\leq \int _{X}e^{f}d\mu }
If
X
{\displaystyle X}
is finite,
μ
{\displaystyle \mu }
is a counting measure, and if
f
(
x
i
)
=
p
i
{\displaystyle f(x_{i})=p_{i}}
, then
e
(
p
1
+
…
+
p
n
n
)
≤
1
n
(
e
p
1
+
e
p
2
+
…
+
e
p
n
)
{\displaystyle \displaystyle e^{\left({\frac {p_{1}+\ldots +p_{n}}{n}}\right)}\leq {\frac {1}{n}}\left(e^{p_{1}}+e^{p_{2}}+\ldots +e^{p_{n}}\right)}
For every
f
∈
L
p
{\displaystyle f\in {\mathcal {L}}^{p}}
, define
‖
f
‖
p
=
(
∫
X
|
f
|
p
d
μ
)
1
p
{\displaystyle \|f\|_{p}=\left(\int _{X}|f|^{p}d\mu \right)^{\frac {1}{p}}}
Let
1
<
p
,
q
<
∞
{\displaystyle 1<p,q<\infty }
such that
1
p
+
1
q
=
1
{\displaystyle \displaystyle {\frac {1}{p}}+{\frac {1}{q}}=1}
. Let
f
∈
L
p
{\displaystyle f\in {\mathcal {L}}^{p}}
and
g
∈
L
q
{\displaystyle g\in {\mathcal {L}}^{q}}
.
Then,
f
g
∈
L
1
{\displaystyle fg\in {\mathcal {L}}^{1}}
and
‖
f
g
‖
≤
‖
f
‖
p
‖
g
‖
q
{\displaystyle \|fg\|\leq \|f\|_{p}\|g\|_{q}}
Proof
We know that
log
{\displaystyle \log }
is a concave function
Let
0
≤
t
≤
1
{\displaystyle 0\leq t\leq 1}
,
0
<
a
<
b
{\displaystyle 0<a<b}
. Then
t
log
a
+
(
1
−
t
)
log
b
≤
log
(
a
t
+
b
(
1
−
t
)
)
{\displaystyle t\log a+(1-t)\log b\leq \log(at+b(1-t))}
That is,
a
t
b
1
−
t
≤
t
a
+
(
1
−
t
)
b
{\displaystyle a^{t}b^{1-t}\leq ta+(1-t)b}
Let
t
=
1
p
{\displaystyle t={\frac {1}{p}}}
,
a
=
(
|
f
|
‖
f
‖
p
)
p
{\displaystyle a=\left({\frac {|f|}{\|f\|_{p}}}\right)^{p}}
,
b
=
(
|
f
|
‖
f
‖
q
)
q
{\displaystyle b=\left({\frac {|f|}{\|f\|_{q}}}\right)^{q}}
|
f
|
‖
f
‖
p
|
g
|
‖
g
‖
q
≤
1
p
|
f
|
p
‖
f
‖
p
p
+
1
q
|
g
|
q
‖
g
‖
q
q
{\displaystyle \displaystyle {\frac {|f|}{\|f\|_{p}}}{\frac {|g|}{\|g\|_{q}}}\leq {\frac {1}{p}}{\frac {|f|^{p}}{\|f\|_{p}^{p}}}+{\frac {1}{q}}{\frac {|g|^{q}}{\|g\|_{q}^{q}}}}
Then,
1
‖
f
‖
p
‖
g
‖
q
∫
X
|
f
|
|
g
|
d
μ
≤
1
p
‖
f
‖
p
p
∫
X
|
f
|
p
d
μ
+
1
p
‖
g
‖
q
q
∫
X
|
g
|
q
d
μ
=
1
{\displaystyle \displaystyle {\frac {1}{\|f\|_{p}\|g\|_{q}}}\int _{X}|f||g|d\mu \leq {\frac {1}{p\|f\|_{p}^{p}}}\int _{X}|f|^{p}d\mu +{\frac {1}{p\|g\|_{q}^{q}}}\int _{X}|g|^{q}d\mu =1}
,
which proves the result
If
μ
(
X
)
<
∞
{\displaystyle \mu (X)<\infty }
,
1
<
s
<
r
<
∞
{\displaystyle 1<s<r<\infty }
then
L
r
⊂
L
s
{\displaystyle {\mathcal {L}}^{r}\subset {\mathcal {L}}^{s}}
Proof
Let
ϕ
∈
L
s
{\displaystyle \phi \in {\mathcal {L}}^{s}}
,
p
=
r
s
≥
1
{\displaystyle p={\frac {r}{s}}\geq 1}
,
g
≡
1
{\displaystyle g\equiv 1}
Then,
f
=
|
ϕ
|
s
∈
L
1
{\displaystyle f=|\phi |^{s}\in {\mathcal {L}}^{1}}
, and hence
∫
X
|
ϕ
|
s
d
μ
≤
(
∫
X
(
|
ϕ
|
s
)
r
s
d
μ
)
s
r
μ
(
X
)
1
−
s
r
{\displaystyle \displaystyle \int _{X}|\phi |^{s}d\mu \leq \left(\int _{X}\left(|\phi |^{s}\right)^{\frac {r}{s}}d\mu \right)^{\frac {s}{r}}\mu (X)^{1-{\frac {s}{r}}}}
We say that if
f
,
g
:
X
→
C
{\displaystyle f,g:X\to \mathbb {C} }
,
f
=
g
{\displaystyle f=g}
almost everywhere on
X
{\displaystyle X}
if
μ
(
{
x
|
f
(
x
)
≠
g
(
x
)
}
)
=
0
{\displaystyle \mu (\{x|f(x)\neq g(x)\})=0}
. Observe that this is an equivalence relation on
L
p
{\displaystyle {\mathcal {L}}^{p}}
If
(
X
,
Σ
,
μ
)
{\displaystyle (X,\Sigma ,\mu )}
is a measure space, define the space
L
p
{\displaystyle L^{p}}
to be the set of all equivalence classes of functions in
L
p
{\displaystyle {\mathcal {L}}^{p}}
The
L
p
{\displaystyle L^{p}}
space with the
‖
⋅
‖
p
{\displaystyle \|\cdot \|_{p}}
norm is a normed linear space, that is,
‖
f
‖
p
≥
0
{\displaystyle \|f\|_{p}\geq 0}
for every
f
∈
L
p
{\displaystyle f\in L^{p}}
, further,
‖
f
‖
p
=
0
⟺
f
=
0
{\displaystyle \|f\|_{p}=0\iff f=0}
‖
λ
‖
p
=
|
λ
|
‖
f
‖
p
{\displaystyle \|\lambda \|_{p}=|\lambda |\|f\|_{p}}
‖
f
+
g
‖
p
≤
‖
f
‖
p
+
‖
g
‖
p
{\displaystyle \|f+g\|_{p}\leq \|f\|_{p}+\|g\|_{p}}
. . . (Minkowski's inequality)
Proof
1. and 2. are clear, so we prove only 3. The cases
p
=
1
{\displaystyle p=1}
and
p
=
∞
{\displaystyle p=\infty }
(see below) are obvious, so assume that
0
<
p
<
∞
{\displaystyle 0<p<\infty }
and let
f
,
g
∈
L
p
{\displaystyle f,g\in L^{p}}
be given. Hölder's inequality yields the following, where
q
{\displaystyle q}
is chosen such that
1
/
q
+
1
/
p
=
1
{\displaystyle 1/q+1/p=1}
so that
p
/
q
=
p
−
1
{\displaystyle p/q=p-1}
:
∫
X
|
f
+
g
|
p
d
μ
=
∫
X
|
f
+
g
|
p
−
1
|
f
+
g
|
d
μ
≤
∫
X
|
f
+
g
|
p
−
1
(
|
f
|
+
|
g
|
)
d
μ
{\displaystyle \displaystyle \int _{X}|f+g|^{p}d\mu =\int _{X}|f+g|^{p-1}|f+g|d\mu \leq \int _{X}|f+g|^{p-1}(|f|+|g|)d\mu }
≤
(
∫
X
|
f
+
g
|
(
p
−
1
)
q
d
μ
)
1
q
‖
f
‖
p
+
(
∫
X
|
f
+
g
|
(
p
−
1
)
q
d
μ
)
1
q
‖
g
‖
p
=
‖
f
+
g
‖
p
p
q
‖
f
‖
p
+
‖
f
+
g
‖
p
p
q
‖
g
‖
p
.
{\displaystyle \leq \displaystyle \left(\int _{X}|f+g|^{(p-1)q}d\mu \right)^{\frac {1}{q}}\|f\|_{p}+\left(\int _{X}|f+g|^{(p-1)q}d\mu \right)^{\frac {1}{q}}\|g\|_{p}=\|f+g\|_{p}^{\frac {p}{q}}\|f\|_{p}+\|f+g\|_{p}^{\frac {p}{q}}\|g\|_{p}.}
Moreover, as
t
↦
t
p
{\displaystyle t\mapsto t^{p}}
is convex for
p
>
1
{\displaystyle p>1}
,
|
f
+
g
|
p
2
p
=
|
f
2
+
g
2
|
p
≤
(
|
f
|
2
+
|
g
|
2
)
p
≤
1
2
|
f
|
p
+
1
2
|
g
|
p
.
{\displaystyle \displaystyle {\frac {|f+g|^{p}}{2^{p}}}=\left|{\frac {f}{2}}+{\frac {g}{2}}\right|^{p}\leq \left({\frac {|f|}{2}}+{\frac {|g|}{2}}\right)^{p}\leq {\frac {1}{2}}|f|^{p}+{\frac {1}{2}}|g|^{p}.}
This shows that
‖
f
+
g
‖
p
<
∞
{\displaystyle \|f+g\|_{p}<\infty }
so that we may divide by it in the previous calculation to obtain
‖
f
+
g
‖
p
≤
‖
f
‖
p
+
‖
g
‖
p
{\displaystyle \|f+g\|_{p}\leq \|f\|_{p}+\|g\|_{p}}
.
Define the space
L
∞
=
{
f
|
X
→
C
,
f
is bounded almost everywhere
}
{\displaystyle L^{\infty }=\{f|X\to \mathbb {C} ,f{\text{ is bounded almost everywhere}}\}}
. Further, for
f
∈
L
∞
{\displaystyle f\in L^{\infty }}
define
‖
f
‖
∞
=
sup
{
|
f
(
x
)
|
:
x
∉
E
}
{\displaystyle \|f\|_{\infty }=\sup\{|f(x)|:x\notin E\}}