Check

edit
(%i1) load(to_poly);
(%o1)  home/a/maxima/share/to_poly_solve/to_poly.lisp
(%i2) r;
(%o2) r 
(%i3) isreal_p(r);
(%o3) true     /*  When I use unspecified variables, Maxima seems to assume that they are real */ 
(%i4) z:x+y*%i;
(%o4) %i y + x
(%i5) isreal_p(z);
(%o5) isreal_p(%i y) /* maxima can't check if it is real or not */
(%i6) isreal_p(x);
(%o6) true
(%i7) isreal_p(y);
(%o7) true
(%i8) complex_number_p(z); 
(%o8) false 
(%i9) declare(z, complex);
(%o9) done
(%i10) complex_number_p(z);
(%o10)   false /* still not complex */                                                                                                              true


Random numbers

edit
  bfloat(random(10^fpprec) / 10^fpprec); /* random bfloat with fpprec decimal digits in the range 0 to 1 */

Number types

edit

Binary numbers

edit
(%i1) ibase;
(%o1) 10
(%i2) obase;
(%o2) 10
(%i3) ibase:2;
(%o3) 2
(%i4) x=1001110;
(%o4) x=78


Complex numbers

edit

Argument

edit

Principial value of argument of complex number in turns carg produces results in the range (-pi, pi] . It can be mapped to [0, 2*pi) by adding 2*pi to the negative values

carg_t(z):=
 block(
 [t],
 t:carg(z)/(2*%pi),  /* now in turns */
 if t<0 then t:t+1, /* map from (-1/2,1/2] to [0, 1) */
 return(t)
)$

On can order list of complex points according to it's argument :

l2_ordered: sort(l2, lambda([z1,z2], is(carg(z1) < carg(z2))))$


rational numbers

edit
  • rat
  • ratp

Rationalize with limit denominator:[1]

limit_denominator(x, max_denominator):=
block([p0, q0, p1, q1, n, d, a, q2, k, bound1, bound2, ratprint: false],
 [p0, q0, p1, q1]: [0, 1, 1, 0],
 [n, d]: ratexpand([ratnum(x), ratdenom(x)], 0),
 if d <= max_denominator then x else
 (catch(
   do block(
     a: quotient(n, d),
     q2: q0+a*q1,
     if q2 > max_denominator then throw('done),
     [p0, q0, p1, q1]: [p1, q1, p0+a*p1, q2],
     [n, d]: [d, n-a*d])),
 k: quotient(max_denominator-q0, q1),
 bound1: (p0+k*p1)/(q0+k*q1),
 bound2: p1/q1,
 if abs(bound2 - x) <= abs(bound1 - x) then bound2 else bound1))$

Predicate functions

edit
(%i1) is(0=0.0);
(%o1) false

Compare :

(%i1) a:0.0$
(%i2)is(equal(a,0));
(%o2) true


List of predicate functions ( see p at the end ) :

  • abasep
  • alphacharp
  • alphanumericp
  • atom
  • bfloatp
  • blockmatrixp
  • cequal
  • cequalignore
  • cgreaterp
  • cgreaterpignore
  • charp
  • clessp
  • clesspignore
  • complex_number_p from to_poly package
  • constantp
  • constituent
  • diagmatrixp
  • digitcharp
  • disjointp
  • elementp
  • emptyp
  • evenp
  • featurep
  • floatnump ( compare : isreal_p)
  • if
  • integerp
  • intervalp
  • is
  • isreal_p from to_poly package
  • lcharp
  • listp
  • listp
  • lowercasep
  • mapatom
  • matrixp
  • matrixp
  • maybe
  • member
  • nonnegintegerp
  • nonscalarp
  • numberp
  • oddp
  • operatorp
  • ordergreatp
  • orderlessp
  • picture_equalp
  • picturep
  • poly_depends_p
  • poly_grobner_subsetp
  • polynomialp
  • prederror
  • primep
  • ratnump
  • ratp
  • scalarp
  • sequal
  • sequalignore
  • setequalp
  • setp
  • stringp
  • subsetp
  • subvarp
  • symbolp
  • symmetricp
  • taylorp
  • unknown
  • uppercasep
  • zeroequiv
  • zeromatrixp
  • zn_primroot_p


See also :

  • declare[2]
    • property:
      • rational, irrational, real, imaginary, complex,
      • even, odd,
      • decreasing, increasing
      • evenfun, oddfun

Number Theory

edit

There are functions and operators useful with integer numbers

Elementary number theory

edit

In Maxima there are some elementary functions like the factorial n! and the double factorial n!! defined as   where   is the greatest integer less than or equal to  

Divisibility

edit

Some of the most important functions for integer numbers have to do with divisibility:

gcd, ifactor, mod, divisors... 

all of them well documented in help. you can view it with the '?' command.

Function ifactors takes positive integer and returns a list of pairs : prime factor and its exponent. For example :

a:ifactors(8);
[[2,3]]

It means that :  

Other Functions

edit

Continuus fractions :

(%i6) cfdisrep([1,1,1,1]);
(%o6) 1+1/(1+1/(1+1/1))
(%i7) float(%), numer;
(%o7) 1.666666666666667
  1. stackoverflow question : rationalize-number-with-limit-denominator
  2. maxima manual : Category Declarations-and-inferences