Power sets allow us to discuss the class of all subsets of a given set
A
{\displaystyle A}
, i.e.
{
U
|
U
⊆
A
}
{\displaystyle \{U\;|\;U\subseteq A\}}
. That this is a set is the subject of the Power Set Axiom.
Axiom
Given a set
A
{\displaystyle A}
there exists a set of sets
S
{\displaystyle S}
such that
U
∈
S
{\displaystyle U\in S}
iff
U
⊆
A
{\displaystyle U\subseteq A}
.
Theorem Given a set
A
{\displaystyle A}
, there exists a unique set whose elements are the subsets of
A
{\displaystyle A}
.
Proof If
S
1
{\displaystyle S_{1}}
and
S
2
{\displaystyle S_{2}}
are two such sets of subsets then
U
∈
S
1
{\displaystyle U\in S_{1}}
if and only if
U
⊆
A
{\displaystyle U\subseteq A}
. But the same is true of
S
2
{\displaystyle S_{2}}
. Thus
U
∈
S
1
{\displaystyle U\in S_{1}}
iff
U
∈
S
2
{\displaystyle U\in S_{2}}
, and so
S
1
=
S
2
{\displaystyle S_{1}=S_{2}}
by the Axiom of Extensionality.
◻
{\displaystyle \square }
Definition Given a set
A
{\displaystyle A}
, the set of all subsets of
A
{\displaystyle A}
is called the power set of
A
{\displaystyle A}
. It is denoted
P
(
A
)
{\displaystyle {\mathcal {P}}(A)}
.
Example If
A
=
{
a
,
b
,
c
}
{\displaystyle A=\{a,b,c\}}
then
P
(
A
)
=
{
∅
,
{
a
}
,
{
b
}
,
{
c
}
,
{
a
,
b
}
,
{
a
,
c
}
,
{
b
,
c
}
,
{
a
,
b
,
c
}
}
{\displaystyle {\mathcal {P}}(A)=\{\emptyset ,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\}}
.
Recall the Kuratowski definition of an ordered pair,
(
a
,
b
)
=
{
{
a
}
,
{
a
,
b
}
}
{\displaystyle (a,b)=\{\{a\},\{a,b\}\}}
for
a
{\displaystyle a}
and
b
{\displaystyle b}
elements of a set
A
{\displaystyle A}
. Note that
{
a
}
{\displaystyle \{a\}}
and
{
a
,
b
}
{\displaystyle \{a,b\}}
are both subsets of
A
{\displaystyle A}
, i.e. they are elements of the power set
P
(
A
)
{\displaystyle {\mathcal {P}}(A)}
.
This means that
(
a
,
b
)
{\displaystyle (a,b)}
is a subset of
P
(
A
)
{\displaystyle {\mathcal {P}}(A)}
, i.e.
(
a
,
b
)
∈
P
(
P
(
A
)
)
{\displaystyle (a,b)\in {\mathcal {P}}({\mathcal {P}}(A))}
.
We can generalise this slightly with a simple trick. We can define
(
a
,
b
)
{\displaystyle (a,b)}
with
a
∈
A
{\displaystyle a\in A}
and
b
∈
B
{\displaystyle b\in B}
for sets
A
{\displaystyle A}
and
B
{\displaystyle B}
. In order to do this, we simply take the elements
a
{\displaystyle a}
and
b
{\displaystyle b}
from the union of sets
A
∪
B
{\displaystyle A\cup B}
.
In other words, we have
(
a
,
b
)
∈
P
(
P
(
A
∪
B
)
)
{\displaystyle (a,b)\in {\mathcal {P}}({\mathcal {P}}(A\cup B))}
with
a
∈
A
{\displaystyle a\in A}
and
b
∈
B
{\displaystyle b\in B}
.
Theorem The class of all ordered pairs
(
a
,
b
)
{\displaystyle (a,b)}
of elements of
A
∪
B
{\displaystyle A\cup B}
with
a
∈
A
{\displaystyle a\in A}
and
b
∈
B
{\displaystyle b\in B}
, is a set.
Proof The set in question is given by
{
x
∈
P
(
P
(
A
∪
B
)
)
|
x
=
(
a
,
b
)
,
a
∈
A
and
b
∈
B
}
{\displaystyle \{x\in {\mathcal {P}}({\mathcal {P}}(A\cup B))\;|\;x=(a,b),a\in A\;{\mbox{and}}\;b\in B\}}
. This is a set by the axioms of Power Set, Union and the Axiom Schema of Comprehension.
◻
{\displaystyle \square }
Definition The set of ordered pairs
(
a
,
b
)
{\displaystyle (a,b)}
with
a
∈
A
{\displaystyle a\in A}
and
b
∈
B
{\displaystyle b\in B}
is called the cartesian product of
A
{\displaystyle A}
and
B
{\displaystyle B}
, and is denoted
A
×
B
{\displaystyle A\times B}
.
Show that for sets
A
,
B
,
C
,
D
{\displaystyle A,B,C,D}
we have
(
A
∩
B
)
×
(
C
∩
D
)
=
(
A
×
C
)
∩
(
B
×
D
)
{\displaystyle (A\cap B)\times (C\cap D)=(A\times C)\cap (B\times D)}
.
Show that for sets
A
,
B
,
C
{\displaystyle A,B,C}
we have
A
×
(
B
∩
C
)
=
(
A
×
B
)
∩
(
A
×
C
)
{\displaystyle A\times (B\cap C)=(A\times B)\cap (A\times C)}
.
Show that for sets
A
,
B
,
C
{\displaystyle A,B,C}
we have
A
×
(
B
∪
C
)
=
(
A
×
B
)
∪
(
A
×
C
)
{\displaystyle A\times (B\cup C)=(A\times B)\cup (A\times C)}
.
Show that for sets
A
,
B
,
C
{\displaystyle A,B,C}
with
A
⊆
B
{\displaystyle A\subseteq B}
we have
A
×
C
⊆
B
×
C
{\displaystyle A\times C\subseteq B\times C}
.
← Classes and foundation · Natural numbers →