R
{\displaystyle \mathbb {R} }
,
R
+
{\displaystyle \mathbb {R} ^{+}}
,
R
n
{\displaystyle \mathbb {R} ^{n}}
real numbers, reals greater than
0
{\displaystyle 0}
, ordered
n
{\displaystyle n}
-tuples of reals
N
{\displaystyle \mathbb {N} }
natural numbers:
{
0
,
1
,
2
,
…
}
{\displaystyle \{0,1,2,\ldots \}}
C
{\displaystyle \mathbb {C} }
complex numbers
{
…
|
…
}
{\displaystyle \{\ldots \,{\big |}\,\ldots \}}
set of . . . such that . . .
(
a
.
.
b
)
{\displaystyle (a\,..\,b)}
,
[
a
.
.
b
]
{\displaystyle [a\,..\,b]}
interval (open or closed) of reals between
a
{\displaystyle a}
and
b
{\displaystyle b}
⟨
…
⟩
{\displaystyle \langle \ldots \rangle }
sequence; like a set but order matters
V
,
W
,
U
{\displaystyle V,W,U}
vector spaces
v
→
,
w
→
{\displaystyle {\vec {v}},{\vec {w}}}
vectors
0
→
{\displaystyle {\vec {0}}}
,
0
→
V
{\displaystyle {\vec {0}}_{V}}
zero vector, zero vector of
V
{\displaystyle V}
B
,
D
{\displaystyle B,D}
bases
E
n
=
⟨
e
→
1
,
…
,
e
→
n
⟩
{\displaystyle {\mathcal {E}}_{n}=\langle {\vec {e}}_{1},\,\ldots ,\,{\vec {e}}_{n}\rangle }
standard basis for
R
n
{\displaystyle \mathbb {R} ^{n}}
β
→
,
δ
→
{\displaystyle {\vec {\beta }},{\vec {\delta }}}
basis vectors
R
e
p
B
(
v
→
)
{\displaystyle {\rm {Rep}}_{B}({\vec {v}})}
matrix representing the vector
P
n
{\displaystyle {\mathcal {P}}_{n}}
set of
n
{\displaystyle n}
-th degree polynomials
M
n
×
m
{\displaystyle {\mathcal {M}}_{n\!\times \!m}}
set of
n
×
m
{\displaystyle n\!\times \!m}
matrices
[
S
]
{\displaystyle [S]}
span of the set
S
{\displaystyle S}
M
⊕
N
{\displaystyle M\oplus N}
direct sum of subspaces
V
≅
W
{\displaystyle V\cong W}
isomorphic spaces
h
,
g
{\displaystyle h,g}
homomorphisms, linear maps
H
,
G
{\displaystyle H,G}
matrices
t
,
s
{\displaystyle t,s}
transformations; maps from a space to itself
T
,
S
{\displaystyle T,S}
square matrices
R
e
p
B
,
D
(
h
)
{\displaystyle {\rm {Rep}}_{B,D}(h)}
matrix representing the map
h
{\displaystyle h}
h
i
,
j
{\displaystyle h_{i,j}}
matrix entry from row
i
{\displaystyle i}
, column
j
{\displaystyle j}
|
T
|
{\displaystyle \left|T\right|}
determinant of the matrix
T
{\displaystyle T}
R
(
h
)
,
N
(
h
)
{\displaystyle {\mathcal {R}}(h),{\mathcal {N}}(h)}
rangespace and nullspace of the map
h
{\displaystyle h}
R
∞
(
h
)
,
N
∞
(
h
)
{\displaystyle {\mathcal {R}}_{\infty }(h),{\mathcal {N}}_{\infty }(h)}
generalized rangespace and nullspace