LMIs in Control/pages/Mixed H2 Hinf optimal state feedback control
LMIs in Control/pages/Mixed H2 Hinf optimal state feedback control
Mixed Optimal State Feedback Control
The Optimization Problem
editThis Optimization problem involves the same process used on the full-feedback control design; however, instead of optimizing the full output-feedback design of the Optimal output-feedback control design. This is done by defining the 9-matrix plant as such: , , , , , , , , and . Using this type of optimization allows for stacking of optimization LMIs in order to achieve the controller synthesis for both and .
The Data
editThe data is dependent on the type the state-space representation of the 9-matrix plant; therefore the following must be known for this LMI to be calculated: , , , , , , , , and .
The LMI: Mixed Optimal State Feedback Control
editThere exists the scalars , , along with the matrices , and where:
Where is the controller matrix.
Conclusion:
editThe results from this LMI give a controller that is a mixed optimization of both an , and optimization.
Implementation
edit% Mixed Hinf/H2 state feedback optimization
% -- EXAMPLE --
clear; clc; close all;
%Given
A = [ 1 1 0 1 0 1;
-1 -1 -1 0 0 1;
1 0 1 -1 1 1;
-1 1 -1 -1 0 0;
-1 -1 1 1 1 -1;
0 -1 0 0 -1 -1];
B1 = [ 0 -1 -1;
0 0 0;
-1 1 1;
-1 0 0;
0 0 1;
-1 1 1];
B2 = [ 0 0 0;
-1 0 1;
-1 1 0;
1 -1 0;
-1 0 -1;
0 1 1];
C1 = [ 0 1 0 -1 -1 -1;
0 0 0 -1 0 0;
1 0 0 0 -1 0];
D12= [ 1 1 1;
0 0 0;
0.1 0.2 0.4];
D11= [ 1 2 3;
0 0 0;
0 0 0];
%Error
eta = 1E-4;
%sizes of matrices
numa = size(A,1); %states
numb2 = size(B2,2); %actuators
numb1 = size(B1,2); %external inputs
numc1 = size(C1,1); %regulated outputs
%variables
gam1= sdpvar(1);
gam2= sdpvar(1);
Y = sdpvar(numa);
Z = sdpvar(numb2,numa,'full');
W = sdpvar(numc1);
%Matrix for LMI optimization
M1 = Y*A'+A*Y+B2*Z+Z'*B2'+B1*B1';
M2 = [Y (C1*Y+D12*Z)' ;
C1*Y+D12*Z W ];
M3 = [Y*A'+A*Y+Z'*B2'+B2*Z B1 Y*C1'+Z'*D12';
B1' -eye(numb1) D11';
C1*Y+D12*Z D11 -gam1*eye(numc1)];
%Constraints
Fc = (M1 <= 0);
Fc = [Fc; M3 <= 0];
Fc = [Fc; trace(W) <= gam2];
Fc = [Fc; Y >= eta*eye(numa)];
Fc = [Fc; M2 >= zeros(numa+numc1)];
opt = sdpsettings('solver','sedumi');
%Objective function
obj = gam1 + gam2;
%Optimizing given constraints
optimize(Fc,obj,opt);
F = value(Z)*inv(value(Y)); %#ok<MINV>
fprintf('\n\nState-Feedback controller F matrix')
display(F)
External Links
edit- LMI Methods in Optimal and Robust Control - A course on LMIs in Control by Matthew Peet.