LMIs in Control/D-Stability/Observer D-Stability
This is a WIP Page .
x
˙
(
t
)
=
A
x
(
t
)
x
(
0
)
=
x
0
{\displaystyle {\begin{aligned}{\dot {x}}(t)&=Ax(t)\\x(0)&=x_{0}\end{aligned}}}
In order to properly define the acceptable region of the poles in the complex plane, we need the following three pieces of data: rise time (
t
r
{\displaystyle t_{r}}
), settling time (
t
s
{\displaystyle t_{s}}
), and percent overshoot (
M
p
{\displaystyle M_{p}}
). From this, we have to then define the acceptable region in the complex plane that the poles can lie on using the following inequality constraints:
Rise Time :
ω
n
≤
1.8
t
r
{\displaystyle \omega _{n}{\leq }{1.8 \over t_{r}}}
Settling Time :
σ
≤
−
4.6
t
s
{\displaystyle \sigma {\leq }{-4.6 \over t_{s}}}
Percent Overshoot :
σ
≤
−
l
n
(
M
p
)
π
|
ω
d
|
{\displaystyle \sigma {\leq }{-ln({M_{p}}) \over {\pi }}|{\omega _{d}}|}
Assume that
z
{\displaystyle z}
is the complex pole location, then:
ω
n
2
=
‖
z
‖
2
=
z
∗
z
ω
d
=
I
m
z
=
(
z
−
z
∗
)
2
σ
=
R
e
z
=
(
z
+
z
∗
)
2
{\displaystyle {\begin{aligned}{\omega _{n}}^{2}=\|z\|^{2}&=z^{*}z\\{\omega _{d}}=Im{z}&={(z-z^{*}) \over 2}\\{\sigma }=Re{z}&={(z+z^{*}) \over 2}\end{aligned}}}
This then allows us to modify our inequality constraints as:
Rise Time :
z
∗
z
−
1.8
2
t
r
2
≤
0
{\displaystyle z^{*}z-{1.8^{2} \over {t_{r}}^{2}}{\leq }0}
Settling Time :
(
z
+
z
∗
)
2
+
4.6
t
s
≤
0
{\displaystyle {(z+z^{*}) \over 2}+{4.6 \over t_{s}}{\leq }0}
Percent Overshoot :
z
−
z
∗
+
π
l
n
(
M
p
)
|
z
+
z
∗
|
≤
0
{\displaystyle z-z^{*}+{{\pi } \over ln({M_{p}})}|z+z^{*}|{\leq }0}
The Optimization Problem
edit
A description of the Problem to be solved, if appropriate.
The LMI: The Observer D-Stability
edit
Title and mathematical description of the LMI formulation.
Find
X
:
[
X
]
>
0
[
A
T
X
+
X
A
]
<
0
{\displaystyle {\begin{aligned}{\text{Find}}\;X:&\\{\begin{bmatrix}X\end{bmatrix}}&>0\\{\begin{bmatrix}A^{T}X+XA\end{bmatrix}}&<0\end{aligned}}}
Interpretation of the results of the LMI
A link to CodeOcean or other online implementation of the LMI
Return to Main Page:
edit