Introductory Linear Algebra/System of linear equations


Systems of linear equations in matrix form

edit

We should define what is system of linear equations before expressing it in matrix form.

Definition. (System of linear equations) A system of linear equations (SLE) in   unknowns   is a family of equations of the form   in which  's and  's are some constants.

Remark.

  • in some other definitions, a single linear equation can be regarded as a system of linear equations, but since we can already easily solve a single linear equation, we are not interested in such a case, and thus we do not include this possibility


We often use the terms 'consistent' and 'inconsistent' to describe the number of solutions of a system of linear equations.

Definition.

 
This system of three linear equations in two unknowns is inconsistent, since there are no common intersection points for the three lines.
(Consistency of system of linear equations)

A system of linear equations is consistent if it has at least one solution. Otherwise, it is inconsistent (i.e., it is inconsistent if it has no solutions).

Remark.

  • as we will see, a SLE can either have no solutions, one unique solution, or infinitely many solutions. Thus, a SLE is consistent if and only if it has either a unique solution or infinitely many solutions

Example. (Consistent SLE) Consider the SLE   Since   the solutions are   such that  . Thus, this SLE has infinitely many solutions, and the SLE is consistent.

Example. (Inconsistent SLE) Consider the SLE   Putting   into  , we get   which is false, and thus there does not exist   such that both equations are satisfied. That is, the SLE has no solutions, and thus it is inconsistent.

Example. (Application of SLE) Suppose ten bottles of orange juice have been allocated to a chicken, a duck and a goose. Given that the chicken and the duck have the same number of bottles of orange juice, and the goose has one more bottle of orange juice than the chicken, how many bottles of orange juice have been allocated to each animal?

Solution: Denote the number of orange juice bottles allocated to the chicken, duck and goose by   and   respectively. Then, from the situation and the given conditions, we have the following SLE:   in which   are all nonnegative integers.

Putting   and   into  , we have   It follows that  , and  .

Thus, three bottles of orange juice have been allocated to each of the chicken and duck, and four bottles of orange juice have been allocated to the goose.

 

Exercise.

1 Choose SLE(s) from the following.

 
 
 
 

2 The final score of each student (the highest possible score is  ) is a weighted average of the score of the student in test 1 and test 2 (full marks of test 1 and test 2 are both  ). Student A gets   and   marks from test 1 and test 2 respectively, and student B gets   and   marks from test 1 and test 2 respectively. Suppose the weighting on the scores of test 1 and test 2 are   and   respectively. It is given that the final score of student A is   exactly. Which of the following is (are) true?

the given information is not sufficient to compute   and  
one possible allocation of weightings is given by  
the final score of student B is the same as that of student A
the final score of student B is strictly higher than that of student A
the final score of student B is strictly lower than that of student A
we do not know whether the final score of student B is higher, lower than, or the same as that of student A


After defining a system of linear equations, we can express it in matrix form in multiple ways, as in the following definition.

Definition. (Coefficient and augmented matrix) Let   be a system of linear equations in the unknowns  , in which  's and  's are some constants.

The matrix   is the coefficient matrix of the system, and the matrix   is the augmented matrix of the system.

Remark.

  • the vertical bar in the augmented matrix is optional, it is put there to separate the constants at the left of ' ' sign and the constants at the right of ' ' sign in the system of linear equations.
  • this system is equivalent to

  which can be rewritten as  

  • the augmented matrix gives all necessary things to solve a system, since the notations for the unknowns are not needed for solving a system.

Example. (Coefficient matrix and augmented matrix) Consider the SLE   which can alternatively expressed as  

The coefficient matrix of this SLE is   and the augmented matrix of this SLE is   We may also express this SLE as   which is in the form of  .

 

Exercise.

1 Choose SLE(s) from the following.

 
 
 
  in which   is a   matrix,   are   matrices.

2 A SLE is represented by the augmented matrix   Choose correct statement(s).

one possible solution is  
one possible solution is  
the size of the coefficient matrix of this SLE is  
the SLE in the question has unique solution

3 Which of the following is (are) the augmented matrix (matrices) representing the SLE   ?

the augmented matrix of this SLE does not exist
 
 
 

4 Choose augmented matrix (matrices) that represents an inconsistent SLE from the following.

 
 
 
 
 


Gauss-Jordan algorithm

edit

Definition. (Elementary row operations) There are three types of elementary row operations (EROs) that we may perform on a matrix, as follows:

  • (Type I) interchanging two different rows
  • (Type II) multiplying a row by a nonzero scalar
  • (Type III) adding a scalar multiple of a row to another row

Remark. We use the following notations for EROs:

  •  : rows of an   matrix (boldface is used since the rows are essentially row vectors)
  •  : interchanging the  th row and the  th row
  •  : multiplying the  th row by a nonzero scalar  
  •  : adding   times the  th row to the  th row

Definition. (Row equivalence) Two matrices of the same size are row equivalent to each other if one matrix can be obtained from the other matrix by performing some EROs.

Remark.

  • since EROs are reversible (by the following proposition), if matrix   can be obtained from matrix   by performing some EROs, then   can also be obtained from   by performing some EROs (each of them reverse one ERO in the EROs performed to obtain   from  , in suitable order)
  • thus, it suffices to prove that   can be obtained from   by some EROs (or vice versa, either one direction) for proving the row equivalence of   and   (  and   are of same size)

Example. (Demonstration of three types of EROs) Consider the matrix   We perform some EROs as follows:   Each matrix shown here is row equivalent to  , since each of them can be obtained from   by performing some EROs, and has the same size as   (it also shows how to perform EROs in suitable order to reverse the EROs performed previously).

 

Exercise.

1 Which of the following is (are) row equivalent to  , the identity matrix with size  ?

 
 
 
 
 

2 Choose correct statement(s).

after performing EROs  , in this order, on a matrix with at least three rows, the resultant matrix is the same as the original matrix
after performing the ERO   on  , we get  
given two arbitrary EROs, performing them on the same matrix in different orders give the same resultant matrix
given two arbitrary EROs, performing them on the same matrix in different orders give the different resultant matrices


Proposition. (EROs are reversible) If matrix   can be obtained from matrix   by performing some EROs, then   can also be obtained from   by performing some EROs (which may be different from the EROs for obtaining   from  ).

Proof. Outline: There is a reverse process (i.e. performing the ERO with its reverse process together, in arbitrary orders, will have no effect on matrix) for each type of EROs, which is also a ERO itself, as illustrated below:

  • the reverse process of type I ERO   is also  
  • the reverse process of type II ERO   is type II ERO   (if  , this ERO is undefined, this is why   must be nonzero for type II ERO, so that it is reversible)
  • the reverse process of type III ERO   is type III ERO  

 

Example. (Illustration of reverse process of each type of ERO)

  • Type I:

 

  • Type II:

 

  • Type III:

 

 

Exercise.

1 Choose correct ERO(s) that is (are) the reverse process of the ERO  .

 
 
 
 

2 Choose correct ERO(s) that is (are) the reverse process of the ERO  .

 
 
 
 


Proposition. (Same solution set by row equivalence) Let   and   be two systems of linear equations with the same number of equations and the same number of variables. If the augmented matrices   and   are row equivalent, then the two systems have the same solution set.

Proof. Outline: It suffices to show that the solution set is unchanged if we perform one ERO. E.g.

  • Type I ERO:

 

  • Type II ERO:

 

  • Type III ERO:

     

 

 

Exercise. Consider three row equivalent matrices  

1 Solve the SLE  

Its unique solution:
 

 

 

2 Solve the SLE  

Its unique solution:
 

 

 


Definition. (Leading entry) The leading entry of a row of a matrix is the leftmost nonzero entry.

Example. The leading entry of the 1st, 2nd row and 3rd of the matrix   is   respectively.

 

Exercise.

1 What is the leading entry of the first row of  ?

0
1
2
3
it does not exist

2 What is the leading entry of the first row of  ?

0
1
2
3
it does not exist


Definition. (Row echelon form) A matrix is in row echelon form (REF) if

  1. All the zero rows (if exist) lie at the bottom of the matrix, and
  2. the leading entry of each nonzero row is always strictly on the right of the leading entries of the rows above.

Definition. (Reduced row echelon form) A matrix is in reduced row echelon form (RREF) if

  1. It is in row echelon form (REF),
  2. the leading entry of each nonzero row equals   (which is called a leading one), and
  3. for each leading one, all other entries in the same column are zero.

Example. (Examples of REF and RREF)

  • the following matrices are in REF, but not in RREF:

 

  • the following matrices are in RREF (and thus are also in REF):

 

  • the following matrices are not REF (and thus are also not in RREF):

 

 

Exercise.

1 Choose RREF(s) from the following.

 
 
 
 
 

2 How many possible values are there for   such that the matrix   is in RREF?

0
1
2
3
infinitely many

3 Consider the matrix   How many possible values are there for   such that the matrix is in REF?

0
1
2
3
infinitely many

4 Consider the matrix   How many possible values are there for   such that the matrix is in RREF?

6
7
8
9
infinitely many


Definition. (Gauss-Jordan Algorithm) The Gauss-Jordan algorithm is a process of performing some EROs to a matrix that converts it to a matrix in RREF. Its steps are as follows:

  1. Consider the leftmost nonzero column, say column  . Swap rows (if necessary) to make the 1st entry   of column   is nonzero.
  2. Multiply the 1st row by   so that the 1st entry of column   is  .
  3. For each other row with a nonzero entry   in column  , add   times the 1st row to this row to make the entry  .
  4. If all rows except the 1st are zero rows, we are done. Otherwise, consider the 1st column which contains a nonzero entry not in the 1st row, say column  . Swap the rows below the 1st row (if necessary) to make the 2nd entry   of the column   nonzero.
  5. Multiply the 2nd row by   to make the 2nd entry of column   equal to  .
  6. For each other row with a nonzero entry   in column  , add   times the 2nd row to this row to make the entry  .
  7. Repeat the process by considering each of the rows below until all rows or columns are used, or the remaining rows are all zero rows. Then, the resultant matrix is in RREF.

Remark.

  • RREF of matrix   is a matrix in RREF obtained from   by performing some EROs
  • it follows that every matrix has its RREF, since we can use Gauss-Jordan algorithm for every matrix
  • RREF of a matrix is unique (the proof is complicated, and so is skipped)
  • in some other definitions of Gauss-Jordan algorithm, some steps may differ, but we should also be able to convert the matrix to its RREF in those ways
  • you may find this website useful for performing computations related to EROs, Gauss-Jordan algorithm, etc.

Example. (Illustration of Gauss-Jordan Algorithm)  

 

Exercise.

Solve the SLE   using Gauss-Jordan algorithm.

Its unique solution:
 

 


Prove that the RREF of the matrix   is  

and  

Proposition. (Determining number of solutions of a system of linear equations) Let   be a system of   linear equations in   unknowns. Let   be the RREF of the augmented matrix  , which is of size  . Then, the following hold.

  • if   has a leading one in the  st column, then the system is inconsistent
  • if   has a leading one in each of the first   columns, but not the  st column, then the system has a unique solution.
  • if   has no leading one in the  st column, and not all of the first   columns contain leading ones, then the system has infinitely many solutions

Remark. Since   must only satisfy one of these three conditions, it follows that the number of solutions to a system of linear equations can only be zero (no solutions), one (unique solution), or infinitely many (exclusive or).

Example. The SLE represented by the   augmented matrix   which is in RREF, is inconsistent, since it has a leading one in the 4th column.

The SLE represented by the   augmented matrix   which is in RREF, has a unique solution, since it has a leading one in each of the first 3 columns, but not the 4th column.

The SLE represented by the   augmented matrix   which is in RREF, has infinitely many solutions, since it has no leading one in the 4th column, and not all of the first 3 columns contain leading ones (2nd column does not contain leading one). This matrix can represent the SLE   If we let   be the independent unknown, then   and  

Remark.

  • independent unknowns (or free variables) are unknowns corresponding to columns without leading ones
  • dependent unknowns (or basic variables) are unknowns corresponding to columns with leading ones
 

Exercise. It is given that the RREF of the matrix   is   Denote the SLE's   by  ,   and   respectively.

1 Does   have no solutions, a unique solution, or infinitely many solutions?

no solutions
a unique solution
infinitely many solutions

2 Does   have no solutions, a unique solution, or infinitely many solutions?

no solutions
a unique solution
infinitely many solutions

3 Does   have no solutions, a unique solution, or infinitely many solutions?

no solutions
a unique solution
infinitely many solutions


Definition. (Homogeneous system of linear equations) A system of linear equations is homogeneous if it is of the form  . A homogeneous system must be consistent, since it has a solution in which each unknown equals zero , which is defined to be a trivial solution. Other solutions, if they exist, are called nontrivial solutions.

Remark. By the proposition about determining the number of solutions of a system of linear equations, it follows that a homogeneous system of linear equations can either have a unique solution, or infinitely many solutions, since the possibility of having no solutions is excluded, by the fact that a homogeneous system of linear equations must be consistent.

Example. (Examples of homogeneous systems of linear equations) The SLE   is homogeneous, and thus is consistent.

Indeed, the RREF of the augmented matrix representing this SLE is   and we can see that the unique solution of this SLE is  , which is the trivial solution.

The SLE   is homogeneous, and thus is consistent.

Indeed, the RREF of the augmented matrix representing this SLE is   and therefore this SLE has infinitely many solutions, since not all of the first 3 columns contain leading ones, and there is no leading one in the 4th column in this matrix.

Proposition. (Sufficient condition for homogeneous system of linear equations to have nontrivial solutions) A homogeneous system of   linear equations in   unknowns must have a nontrivial solution if  .

Proof. The augmented matrix of the homogeneous system of   linear equations in   unknowns is   is  , and thus its RREF has the form   in which   is of size  , since there are   linear equations and   unknowns.

If   has a leading one in each of the first   columns, then there are at least   rows in  . However,   has only   rows, a contradiction. Thus, the homogeneous SLE does not have a unique solution.

Since a SLE can either have no solutions (which is impossible for a homogeneous SLE), a unique solution (which is impossible in this case), or infinitely many solutions, it follows that the homogeneous SLE must have infinitely many solutions, and thus have a nontrivial solution.

 

Remark.

  • this proposition does not claim that if a homogeneous SLE has a nontrivial solution, then the number of linear equations is strictly lower than the number of unknowns (converse of the proposition)
  • e.g. in the above example, even if the number of linear equations equals that of unknowns, the SLE can still have a nontrivial solution

Example. The homogeneous SLE   must have a nontrivial solution.

Indeed, the RREF of the augmented matrix representing this SLE is   Let   be the independent unknown, we have  .