# Introduction to Programming Languages/Functional Data Structures

Most data structures used to implement Abstract Data Types such as queues, stacks and sequences were designed with an imperative mindset. They usually assume data is mutable and random access to memory is fast.

In functional languages such as ML and Haskell, random access is not the rule, but the exception. These languages discourage mutability and random access and some forbid it altogether. Nevertheless, we can still implement most of the more popular data-structures in these languages, keeping the same complexity bounds that we are likely to find in imperative implementations. We shall see some examples of such implementations in the rest of this section.

## Stacks Edit

A stack is an abstract data type which holds a collection of items. It is capable of executing two operations: push and pop. Push is responsible for adding a new item to the stack and pop retrieves the last item inserted, if there is one. Stacks are a type of LIFO data structure, an acronym which stands for Last-In, First-Out.

Stacks can be implemented in many different ways. In python, for instance, we can use the builtin lists to do it as follows:

```
class Stack:
def create_stack(self):
self.data = []
def push(self, item):
self.data.append(item)
def pop(self)
return self.data.pop()
```

Since both append and pop are in python, our stack implementation is capable of conducting both operations in constant time [1].

The ML implementation is as follows:

```
datatype 'a stack = Stack of ('a list)
| Empty
fun push item (Stack s) = Stack (item::s)
fun pop (Stack (first_item::s)) = (first_item, Stack s)
```

There are a few differences between this implementation and its python counterpart that are worth noticing. First of all, observe how pattern matching is used on both push and pop to obtain the contents of the stack.

Both implementations chose to store the contents of the stack within a list.
Lists are built into both python and ML. However, they are used in different
ways in these languages. In ML, lists are Algebraic Data Types backed by a
little syntax sugar. They can be pattern matched on and have an special
operator denoted by **::** which we call **cons**. The **cons** operator allows us
to extract the first element of a list (also called its head) and to append
a new element to an existing list. The empty list is denoted by **nil**.

Another important difference appears on the implementation of pop. SML discourages the usage of mutable data. To work around that, we have to return both the popped item and the stack that is obtained after the operation is carried out. This is a pattern common to most functional implementations of data structures. When using our stack, we need to keep track of the most recent version. For instance, in an ML prompt we could write:

```
$ sml stack.sml
- val v = Stack nil;
val v = Stack [] : 'a stack
- val v2 = push 2 v;
val v2 = Stack [2] : int stack
- pop v2;
val it = (2,Stack []) : int * int stack
- v2;
val it = Stack [2] : int stack
- val (item, v3) = pop v2;
val item = 2 : int
val v3 = Stack [] : int stack
```

Since both **cons** (::) and pattern matching are performed in constant time, push
and pop in our ML implementation are also . As we will see later on this
chapter, this is not always the case. It is not uncommon for functional
implementations of abstract data types to be slower by a factor of or
more than their imperative counterparts.

## Queues Edit

Another common data structure is the queue. Just like stacks, queues are containers
that support two operations: **push** and **pop**. However, while stacks provide
Last-In First-Out ( LIFO ) access, queues are First-In First-Out ( FIFO )
structures. This acronym means that the first item inserted on the queue with **push** is also
the first item to be returned by **pop**. Once more, we will begin our discussion with a simple python implementation.

```
class Queue:
def __init__(self):
self.data = []
def push(self, item):
self.data.append(item)
def pop(self):
return self.data.pop(0)
```

Just like our stack example, this first python implementation uses a list to store the enqueued items. However, the time complexities are much worse than in our first example. While push remains , pop is now , because .pop(0) is also . [2]

We can improve upon our first attempt to implement queues in at least two ways. The first way is to roll out our own list implementation instead of using python's built in lists. In doing that, we can include links to both the previous and the next element, effectively implementing a data structure called Doubly linked list . We present the code for this new implementation bellow:

```
class Node:
def __init__(self):
self.prev = None
self.next = None
self.item = None
class Queue:
def __init__(self):
self.begin = Node()
self.end = Node()
self.begin.next = self.end
self.end.prev = self.begin
def push(self, item):
new_node = Node()
new_node.item = item
new_node.next = self.end
new_node.prev = self.end.prev
new_node.next.prev = new_node
new_node.prev.next = new_node
def pop(self):
popped_node = self.begin.next
new_first = popped_node.next
self.begin.next = new_first
new_first.prev = self.begin
return popped_node.item
```

This code has much better asymptotic behavior than the previous
implementation. Thanks to the doubly linked list, both **push** and **pop** are now
. However, the program became a lot more complex due to the many pointer manipulations that now are required. To push a new item, for instance, we have to
manipulate 4 references that connect nodes. That can be quite hard to get right.

A better approach is to use two python built-in lists instead of one. We call
these lists **push_list** and **pop_list**. The first, **push_list**, stores elements when they
arrive. The list **pop_list** is where elements are popped from. When **pop_list** is empty,
we simply populate it moving the elements from **push_list**.

```
class SimplerQueue:
def __init__(self):
self.push_list = []
self.pop_list = []
def push(self, item):
self.push_list.append(item)
def pop(self):
if not self.pop_list:
while self.push_list:
self.pop_list.append(self.push_list.pop())
return self.pop_list.pop()
```

This code has the desired asymptotic properties: both **push** and **pop** are .
To see why that is the case, consider a sequence of **push** and **pop** operations.
Each **push** is , as it simply appends the elements to a python list. As we have seen before, the **append** operation is in python lists. The operation **pop**, on the
other hand, might be more expensive because items sometimes have to be moved.
However, each pushed item is moved at most once. So the while loop inside **pop**
cannot iterate for more than times *in total* when items are popped. This
means that, while some **pop** operations might be a little more expensive,
each **pop** will run in what is called amortized constant time
Amortized analysis.

The trick of using two python lists to get complexity is useful beyond
python. To see why that is the case, notice that both **push_list** and **pop_list**
are being used as stacks. All we do is to append items to their front and remove
items from their back. As we have seen before, stacks are easy to implement in ML.

But before diving into the ML implementation, we need to make a small digression. It so happens that in order to implement an efficient queue in ML, we need to be able to reverse a list in time. On a first attempt, one might try to use the following code to do that:

```
fun reverse nil = nil
| reverse (first_element::others) = (reverse others) @ [first_element]
```

That code, however, takes quadratic time. The problem is the **@** operator used
to merge the two lists when reversing. It takes time which is linear on the
size of the first list. Since **@** is used once per element and there are
n elements, the complexity becomes

We can work around this shortcoming introducing a second parameter, which stores the reversed list while this list is constructed.

```
fun do_reverse nil accumulator = accumulator
| do_reverse (h::t) accumulator = do_reverse t (h::accumulator)
```

We might wrap the function above in a call that initializes the extra parameter, to give it a nicer interface:

```
fun reverse x = do_reverse x nil
```

Now that we can reverse lists in , **push** and **pop** can be implemented within the same complexity bounds as we have seen in python. The code is as follows:

```
datatype 'a queue = Queue of 'a list * 'a list
fun push item (Queue (push_list, pop_list)) = Queue (item::push_list, pop_list)
fun pop (Queue (push_list, first_item::pop_list)) = (first_item, Queue (push_list, pop_list))
| pop (Queue (push_list, nil)) = pop (Queue (nil, reverse push_list))
```

## Binary Trees Edit

Binary search trees are among the most important data structures in computer science. They can store sets of elements in an ordered way and, if we are lucky, conduct the following operations on these sets in O(log n):

- Insert a new element
- Search an element
- Find the minimum element

By being lucky, we mean that there are sequences of operations that will get these complexities down to O(n). We will show how to deal with them in the next session. It is also worth noticing that this is merely a subset of what trees can do. However, some operations such as deletion can become rather complex and we will not be covering them here.

Trees are made of nodes. Each node contains at least tree things: its data and two subtrees which we will call left and right. Left contains elements strictly smaller than the data stored on the node, whereas right contains elements which are greater. Both left and right are trees themselves, which leads to the following recursive definition in ML:

```
datatype 'a tree = Leaf
| Node of 'a tree * 'a * 'a tree
```

As usual, we begin with a python implementation of the three operations: insert, search and find minimum. Just like the datatype above, the python implementation starts with a description of a tree.

```
class Tree:
def __init__(self, left=None, data=None, right=None):
self.left = left
self.right = right
self.data = data
def insert(node, data):
if node is None:
return Tree(None, data, None)
elif data < node.data:
return TreeNode(insert(node.left, data), node.data, node.right)
elif data > node.data:
return TreeNode(node.left, node.data, insert(node.right, data))
def find(node, data):
if node is None:
return False
elif data < node.data:
return find(node.left, data)
elif data > node.data:
return find(node.right, data)
else:
return True
def find_min(node):
if node.left:
return find_min(node.left)
else:
return node.data
```

This code is actually much more functional than the examples we have seen before. Notice how the tree operations are implemented recursively. In fact, they can be translated to ML rather easily. The equivalent ML code is shown below.

```
datatype 'a tree = Node of 'a tree * 'a * 'a tree
| Empty
fun insert item Empty = Node (Empty, item, Empty)
| insert item (Node (left, data, right)) =
if item < data then
(Node (insert item left, data, right))
else if item > data then
(Node (left, data, insert item right))
else
(Node (left, data, right))
fun find item Empty = false
| find item (Node (left, data, right)) =
if item < data then
find item left
else if item > data then
find item right
else
true
fun find_min (Node (Empty, data, _)) = data
| find_min (Node (left, _, _)) = find_min left
```

Notice how the two implementations are quite similar. This happens because algorithms that manipulate trees have a simple recursive definition, and recursive algorithms are a natural fit for functional programming languages.

There is, however, one important difference. Like what happened on the stack implementation, a new tree has to be returned after an insertion. It is the responsibility of the caller to keep track of that. Below, we present an example of how the tree above could be used from the ML prompt.

```
- val t = Empty;
val t = Empty : 'a tree
- val t0 = Empty;
val t0 = Empty : 'a tree
- val t1 = insert 1 t0;
val t1 = Node (Empty,1,Empty) : int tree
- val t2 = insert 2 t1;
val t2 = Node (Empty,1,Node (Empty,2,Empty)) : int tree
- val t3 = insert 0 t2;
val t3 = Node (Node (Empty,0,Empty),1,Node (Empty,2,Empty)) : int tree
- find 0 t3;
val it = true : bool
- find 0 t1;
val it = false : bool
```

## Tries Edit

The tree implementation discussed on the previous section has a serious drawback. For certains sequences of insertions, it can become too deep, which in turn increases the lookup and insertion times to . To see that, consider this sequence of insertions:

```
- val t = Empty;
val t = Empty : 'a tree
- val t = insert 10 t;
val t = Node (Empty,10,Empty) : int tree
- val t = insert 9 t;
val t = Node (Node (Empty,9,Empty),10,Empty) : int tree
- val t = insert 8 t;
val t = Node (Node (Node #,9,Empty),10,Empty) : int tree
- val t = insert 7 t;
val t = Node (Node (Node #,9,Empty),10,Empty) : int tree
- val t = insert 6 t;
val t = Node (Node (Node #,9,Empty),10,Empty) : int tree
...
```

Although the ML interpreter stops printing the complete tree after a few insertions, the pattern is clear. By inserting nodes in order, the tree effectively becomes a list. Each node has only one child subtree, which is the one at its left.

There are many approaches to solve this problem. One popular approach is to use a balanced binary tree such as a Red-Black tree. Balanced trees incorporate some changes to the insertion algorithm to make sure insertions do not make the tree too deep. However, these changes can be complex.

Another approach is to incorporate an extra key to each node. It can be shown that if these extra keys are chosen randomly and we are able to write the insertion procedure in such a way that the extra key of a node is always bigger than the extra keys of its children, then the resulting tree will likely be shallow. This is known as Treap. Treaps are much easier to implement than balanced trees. However, simpler alternatives still exist.

A third approach is to explore particular properties of the keys. This is the approach that we will follow in this section. Specifically, we will assume that the items stored on nodes are fixed size integers. Given this assumption, we will use each bit in the key's binary representation to position it on the tree. This yields a data structure called Trie. Tries are much simpler to maintain, because they do not require balancing.

This time, we will begin with the ML implementation. A Trie is simply a tree with two kinds of nodes: internal nodes and leafs. We can declare it as follows:

```
datatype trie = Node of trie * trie
| Empty
| Leaf
```

Each node corresponds to a bit in the binary representation of the keys. The position of the bit
is given by the depth of the node. For instance, the root node corresponds to the leftmost bit and
its children correspond to the second bit from left to right.
Keys that begin with 0 are recursively stored in the left subtree. We call this left subtree
**low**. Keys that have 1 on the leftmost bit are stored to the right and we call that subtree **high**.
The special value **Empty** is used to indicate that there is nothing on a particular subtree. **Leaf**
indicates that we have reached the last bit of a key and that it is indeed present.

Since ML has no builtin bitwise operations, we begin by defining two functions to recover a bit in the binary representation of a number and to set it to one. Notice that these operations are linear on the number of bits that a key might have. In a language with support to bitwise operations, such as C or Java, all these operations could be implemented to run in O(1).

```
fun getbit n 1 = n mod 2
| getbit n i = getbit (n div 2) (i - 1)
fun setbit n 1 =
if n mod 2 = 0 then n + 1
else n
| setbit n i =
if n mod 2 = 0 then 2 * setbit (n div 2) (i-1)
else 2 * setbit (n div 2) (i-1) + 1
```

The code of the trie follows. It implements the same operations of the binary tree with a fundamental advantage: as the bits are assigned to nodes based on how deep they are on the tree and keys are usually small, the tree can never become too deep. In fact, its depth never exceeds where is the maximum value any key can have. Thanks to that property, the operations described are also . In typical hardware, never exceeds 64.

```
fun do_insert item _ 0 = Leaf
| do_insert item Empty b =
if getbit item b = 0 then Node (do_insert item Empty (b - 1), Empty)
else Node (Empty, do_insert item Empty (b - 1))
| do_insert item (Node (low, high)) b =
if getbit item b = 0 then Node (do_insert item low (b - 1), high)
else Node (low, do_insert item high (b - 1))
| do_insert item Leaf b = Leaf
fun do_find item Leaf 0 = true
| do_find item Empty b = false
| do_find item (Node (low, high)) b =
if getbit item b = 0 then do_find item low (b - 1)
else do_find item high (b - 1)
fun do_find_min Leaf b = 0
| do_find_min (Node (Empty, high )) b = setbit (do_find_min high (b - 1)) b
| do_find_min (Node (low, _ )) b = do_find_min low (b - 1)
```

The three functions work by transversing the trie while keeping track of the bit they are currently dealing with. To make things easier, we can use the following aliases assuming that keys are no longer than 10 bits.

```
fun insert item t = do_insert item t 10;
fun find item t = do_find item t 10;
fun find_min t = do_find_min t 10;
```

Using the trie implementation from the command prompt is just as easy as using a binary tree.

```
- val t = Empty;
val t = Empty : trie
- val t = insert 1 t;
val t = Node (Node (Node #,Empty),Empty) : trie
- val t = insert 2 t;
val t = Node (Node (Node #,Empty),Empty) : trie
- find 1 t;
val it = true : bool
- find 2 t;
val it = true : bool
- find 3 t;
val it = false : bool
- find_min t;
val it = 1 : int
```