# HydroGeoSphere/References

Abdul, A.S., 1985. Experimental and Numerical studies of the effect of the capillary fringe on streamflow generation, Ph.D. Thesis, University of Waterloo, Waterloo, Ontario, Canada, 210 pp.

Akan, A.O. and B.C. Yen, 1981. Mathematical Model of shallow water flow over porous media, Journal of Hydrology, Division of ASCE, H14, 479--494.

Bear, J., 1972. Dynamics of fluids in porous media, American Elsevier, New York, NY, 764 pp.

Behie, G.A., and P.A. Forsyth, 1984. Incomplete factorization methods for fully implicit simulation of enhanced oil recovery, SIAM J. Sci. Stat. Comput., 5(3), 543--561.

Berkowitz, B., J. Bear, and C. Braester, 1988. Continuum models for contaminant transport in fractured porous formations, Water Resour. Res., 24(8), 1225--1236.

Beven, K.J., 1985. Distributed Models in Hydrological Forecasting, edited by M.G. Anderson, and T.P. Burt, John Wiley, NY, 425--435.

Biot, M.A., 1941. General Theory of Three-Dimensional Consolidation. J. Applied Physics, 12(2):155-164.

Brooks, R.J., and A. T. Corey, 1964. Hydraulic properties of porous media. Hydrology paper 3, Colorado State university, Fort Collins, CO.

Canadell, J., R.B. Jackson, J.R. Ehrlinger, H.A. Mooney, O.E. Sala and E.D. Schulze, 1996. Maximum rooting depth of vegetation types at the global scale, Oecologia, 108:583-595.

Celia, M.A., E.T. Bouloutas, and R.L. Zarba, 1990. A general mass-conservative numerical solution for the unsaturated flow equation, Water Resour. Res., 26(7), 1483--1496.

Cooley, R.L., 1971. A finite difference method for unsteady flow in variably saturated porous media: Application to a single pumping well, Water Resour. Res., 7(6), 1607--1625.

Cooley, R.L., 1983. Some new procedures for numerical simulation of variably-saturated flow problems, Water Resour. Res., 19(5), 1271--1285.

diGiammarco, P., E. Todini, and P. Lamberti, 1996. A conservative finite element approach to overland flow: the control volume finite element formulation, Journal of Hydrology, 175, 267--291.

Dingman, S.L., 1994. Physical Hydrology, 575 pp., Maxmillian, New York.

Feddes, R.A., P.J. Kowalik and H. Zaradny, 1978. Simulation of field water use and crop yield. New York: John Wiley and Sons.

Forsyth, P.A., and P.H. Sammon, 1986. Practical considerations for adaptive implicit methods in reservoir simulation, J. Comput. Phys. 62, 265--281.

Forsyth, P.A., 1988. Comparison of the single-phase and two-phase numerical formulation for saturated-unsaturated groundwater flow, Comput. Methods Appl. Mech. Engrg., 69, 243--259.

Forsyth, P.A., 1991. A control volume finite element approach to NAPL groundwater contamination, SIAM J. Sci. Stat. Comput., 12(5), 1029--1057.

Forsyth, P.A., and R.B. Simpson, 1991. A two phase, two component model for natural convection in a porous medium, Int. J. Num. Meth. Fluids, 12, 655--682.

Forsyth, P.A., Wu, Y.S. and K. Pruess, 1995. Robust numerical methods for saturatedunsaturated flow with dry initial conditions in heterogeneous media, Adv. Water Res., 18(1), 25--38.

Forsyth, P.A., and M.C. Kropinski, 1997. Monotonicity considerations for saturatedunsaturated subsurface flow, SIAM J. Sci. Comp., 18, 1328--1354.

Freeze, R.A., and J.A. Cherry, 1979. Groundwater, Prentice-Hall Inc., New Jersey.

Frind, E.O., 1982. Simulation of long-term transient density-dependent transport in groundwater contamination problems, Adv. Water Res., 5(2), 73--88.

Gelhar, L.W., and M.A. Collins, 1971. General analysis of longitudinal dispersion in nonuniform flow, Water Resources Research, 7 (6), 1511--1521.

Gerke, H.H., and M.T. Van Genuchten, 1993. A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media, Water Resour. Res., 29(2), 305--319.

Gottardi, G. and M. Venutelli, 1993. A Control-Volume finite-element model for twodimensional overland flow, Adv. Water Res., 16, 277--284.

Govindaraju, R.S. and M.L. Kavvas., 1991. Dynamics of moving overland flows over infiltrating surfaces at hillslopes, Water Resour. Res., 27(8), 1885--1898.

Govindaraju, R.S., S.E. Jones and M.L. Kavvas, 1988a. On the Diffusion Wave Model for Overland Flow 1. Solution for steep slopes, Water Resour. Res., 24(5), 734--744.

Govindaraju, R.S., S.E. Jones and M.L. Kavvas, 1988b. On the Diffusion Wave Model for Overland Flow 2. Steady State Analysis, Water Resour. Res., 24(5), 745--754.

Guvanasen, V., 2007. FRAC3DVS Enhancements: Subgridding, Hydromechanical Deformation, and Anisotropic Molecular Diffusion. Report No: In preparation. Ontario Power Generation, Nuclear Waste Management Division, Toronto, Ontario, Canada, M5G 1X6.

Hoopes, J.A., and D.R. Harleman, 1967. Wastewater recharge and dispersion in porous media, Journal of the Hydraulics Division, ASCE, 93 (HY5), 51--71.

Huyakorn, P.S., and G.F. Pinder, 1983. Computational Methods in Subsurface Flow, Academic Press, New York.

Huyakorn, P.S., S.D. Thomas, and B.M. Thompson, 1984. Techniques for making finite elements competitive in modeling flow in variably saturated porous media, Water Resour. Res., 20(8), 1099--1115.

Huyakorn, P.S., A.G. Kretschek, R.W. Broome, J.W. Mercer, and B.H. Lester, 1984b. Testing and validation of models for simulating solute transport in groundwater: development, evaluation and comparison of benchmark techniques. International Groundwater Modeling Center. HRI Report No. 35, Nov.

Huyakorn, P.S., Y.S. Wu and N.S. Park, 1994. An improved sharp-interface model for assessing NAPL contamination and remediation of groundwater systems, Journal of Contaminant Hydrology, 16, 203-234.

Huyakorn, P.S., E.P. Springer, V. Guvanasen, and T.D. Wadsworth, 1986. A threedimensional finite-element model for simulating water flow in variably saturated porous media, Water Resour. Res., 22(13), 1790--1808.

Kristensen, K.J. and S.E. Jensen. 1975. A model for estimating actual evapotranspiration from potential evapotranspiration. Nordic Hydrol., 6:170-88.

Lacombe, S., E.A. Sudicky, S.K. Frape and A.J.A. Unger, 1995. Influence ofleaky boreholes on cross-formational groundwater flow and contaminant transport, Water Resour. Res., 31(8), 1871--1882.

Letniowski, F.W. and P.A. Forsyth,1991. A control volume finite element method for three-dimensional NAPL groundwater contamination, Int. J. Num. Meth. Fluids, 13, 955.

Millington, R.J., 1959. Gas diffusion in porous media, Science, 130, 100--102.

Millington, R.J. and J.P. Quirk, 1961. Permeability of porous solids, Trans. Faraday Society, 15, 1200-1207.

Milly, P.C.D., 1985. A mass-conservative procedure for time-stepping in models of unsaturated flow, Adv. Water Resour., 8, 32--36.

Monteith, J.L., 1981. Evaporation and surface temperature. Q. J. R. Meteorol. Soc., 107:1-27.

Mualem, Y., 1976. A new model to predict the hydraulic conductivity of unsaturated porous media, Water Resour. Res., 12, 513--522.

Neuman, S.P., 1973. Saturated-unsaturated seepage by finite elements, ASCE J. Hydraul. Div., 99(HY12), 2233--2251.

Neuzil, C.E., 2003. Hydromechanical coupling in geological processes, Hydrogeology Journal, 11:41--83.

Nielsen, D.R., M.Th. Van Genuchten, and J.W. Biggar, 1986. Water flow and solute transport processes in the unsaturated zone, Water Resour. Res., 22(9), 89S--108S.

Ogata, A., and R.B. Banks, 1961. A solution of the differential equation of longitudinal dispersion in porous media. U.S. Geol. Surv. Prof. Papper 411-A.

Panday S. and P.S. Huyakorn, 2004. A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow. Advances in Water Resources, 27:361-382.

Panday, S., P.S. Huyakorn, R. Therrien, and R.L. Nichols, 1993. Improved three-dimensional finite element techniques for field simulation of variably saturated flow and transport, J. Contam. Hydrol., 12, 3--33.

Provost, A.M., Voss, C.I. and Neuzil, C.E, 1998. Glaciation and regional ground-water flow in the Fennoscandian Shield; Site 94, Swedish Nuclear Power Inspectorate, SKI Report 96:11, Stockholm, Sweden.

Pruess, K., and Y.W. Tsang, 1990. On two-phase relative permeability and capillary pressure of rough-walled rock fractures, Water Resour. Res., 26(9), 1915--1926.

Perlmutter, N.M., and M. Lieber, 1970. Dispersal of plating wastes and sewage contaminants in groundwater and surface water, South Famingdale-Massapequa area, Nassau County, New york, U.S. Geological Survey Water Supply paper 1879-G.

Rasmussen, T.C. and D.D. Evans, 1989. Fluid flow and solute transport modeling in three-dimensional networks of variably saturated discrete fractures, U.S. Nuclear Regulatory Commission, Report NUREG/CR-5239.

Reitsma, S, and B.H. Kueper, 1994. Laboratory measurement of capillary pressuresaturation relationships in a rock fracture, Water Resour. Res., 30(4), 865--878.

Robin, M.J.L., A.L. Gutjahr, E.A. Sudicky, and J.L. Wilson, 1993. Cross-correlated random field generation with the direct Fourier Transform method, Water Resour. Res., 29(7), 2385--2397.

Sammon, P.H., 1988. An analysis of upstream differencing, Soc. Pet. Engrg. J. Res. Engrg., 3, 1053--1056.

Scurlock, J.M.O., G.P. Asner, and S.T. Gower, 2001. Worldwide Historical Estimates of Leaf Area Index, 1932--2000, prepared for the Oak Ridge National Laboratory, Oak Ridge, Tennessee. ORNL/TM-2001/268.

Sharika, U., S. Senarath, F.L. Ogdon, C.W. Downer and H.O. Sharif, 2000. On the Calibration and Verification of Two-Dimensional, Distributed, Hortonian, Continuous Watershed Models, Water Resour. Res., 36, 6, 1495--1510.

Singh, V. and S.M. Bhallamudi, 1998. Conjunctive surface-subsurface modeling of overland flow, Adv. Water Res., 21, 567--579.

Smith, R.E. and D.A. Woolhiser, 1971. Overland Flow on an Infiltrating Surface, Water Resour. Res., 7(4), 899--913.

Sudicky, E.A., 1990. The Laplace transform Galerkin technique for efficient time-continuous solution of solute transport in double-porosity media. Geoderma, 46, 209--232.

Sudicky, E.A., and R.G. McLaren, 1992. The Laplace transform Galerkin technique for large-scale simulation of mass transport in discretely-fractured porous formations, Water Resour. Res., 28(2), 499--514.

Sudicky, E.A., A.J.A. Unger and S. Lacombe, 1995. A noniterative technique for the direct implementation of well bore boundary conditions in three-dimensional heterogeneous formations, Water Resour. Res., 31(2), 411--415.

Tang, D.H., E.O. Frind, and E.A. Sudicky, 1981. Contaminant transport in fractured porous media: Analytical solution for a single fracture, Water Resour. Res., 17(3), 555--564.

Therrien, R., and E.A. Sudicky, 1996. Three-dimensional analysis of variably-saturated flow and solute transport in discretely-fractured porous media. J. Contam. Hydrol., 23(1-2), 1--44.

Therrien, R., and E.A. Sudicky, 2000. Well bore boundary conditions for variably-saturated flow modeling, Advances in Water Resources, 24, 195-201.

Unger, A.J.A., P.A. Forsyth and E.A. Sudicky, 1996. Variable spatial and temporal weighting schemes for use in multi-phase compositional problems, Adv. Water resour., 19(1), 1--27.

Van Genuchten, M.Th., 1980. A closed-form equation equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892--898.

van Leer, B., 1974. Towards the ultimate conservative difference scheme II Monotonicity and conservation combined in a second order scheme, J. Comp. Phys., 14, 361--370.

VanderKwaak, J., 1999. Numerical Simulation of Flow and Chemical Transport in Integrated Surface-Subsurface Hydrologic Systems. Ph.D. Thesis in Earth Sciences, University of Waterloo, Waterloo, Ontario, Canada, 217 pp.

Viessman, W. (Jr.) and G.L. Lewis, 1996, Introduction to Hydrology, 4th Edition, Harper Collins College Publisher, New York, 760 pp.

Wang, J.S.Y., and T.N. Narasimhan, 1985. Hydrologic mechanisms governing fluid flow in a partially saturated, fractured, porous medium, Water Resour. Res., 21(12), 1861--1874.

Wigmosta M.S., L.W. Vail and D.P. Lettenmaier, 1994. A distributed hydrology-vegetation model for complex terrain. Water Resour. Res., 30(6):1665--1679.

Wilson, J.L., and P.J. Miller, 1978. Two-dimensional plume in uniform groundwater flow, Journal of the Hydraulics Division, ASCE, 104 (HY4), 503--514.

Woolhiser, D.A., 1996. Search for Physically Based Runoff Model - A Hydrologic El Dorado?, J. Hydrol. Eng., 122, 122--129.

Woolhiser, D.A., R.E. Smith, and J.V. Giraldez, 1997. Effects of spatial variability of saturated hydraulic conductivity on Hortonian overland flow, Water Resour. Res., 32(3), 671--678.

Yang, J., R.N. Edwards, 2000. Predicted groundwater circulation in fractured and unfractured anisotropic porous media driven by nuclear fuel waste heat generation. Canadian Journal of Earth Sciences, 37: 1301--1308.

Zheng, C., 1990. A modular three-dimensional transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems, prepared for USEPA Kerr Environmental Research Laboratory, Ada, OK 74820.