General Topology/Countability, density
Definition (dense):
Let be a topological space and let be a subset. is called dense if and only if .
Definition (first-countable):
Let be a topological space. is called first-countable iff for all the neighbourhood filter has a countable basis.
Definition (second-countable):
Let be a topological space. is called second-countable iff the topology of has a countable basis.
Since subsets of countable sets are countable and the open neighbourhoods generate , second-countability implies first-countability.
Definition ():
separable space
Proposition ():
second-countable spaces are separable
Proof: Let be a basis of the topology of and choose . Then is countable and dense.
Proposition ():
subspace of second-countable space is second-countable
Proof: Any countable basis of the topology of induces a countable basis of the subspace topology on .
Proposition ():
continuous function into Hausdorff space is uniquely determined by dense subspace
Proof: Let be arbitrary, and let be any neighbourhood of . By continuity of we may find a neighbourhood of that is mapped completely into . Analogously, whenever is a neighbourhood of , we find a neighbourhood mapping completely into . Then is mapped completely into , so that for any open neighbourhoods of and of . If , then for suitable as above by the Hausdorff condition, a contradiction to . Hence, . Since was arbitrary, we conclude.