General Biology/Getting Started/Chemical Building Blocks of Life
General Biology | Getting Started | Cells | Genetics | Classification | Evolution | Tissues & Systems | Additional Material
Building blocks of life
- Carbon based: organic molecules
- Carbohydrates: CHO
- Lipids: CHO, water insoluble
- Proteins: CHONS, structure/function in cells
- Nucleic acids: CHONP, hereditary (genetic) information
- Can make 4 covalent bonds
- Chains
- Straight
- Branched
- Ring
- Hydrocarbons (C, H): store energy
- Functional groups
- Attach to carbon
- Alter chemical properties
- Form macromolecules
- Sapoteton
- Chains
- Principally CHO (rare N, S and P)
- 1C:2H:1O ratio
- Energy rich (many C-H bonds)
- Monosaccharides (principal: glucose)
- Simple sugars
- Principle formula: C6H12O6
- Form rings in water solution
- Disaccharides (sucrose, lactose)
- Polysaccharides (starch, glycogen, cellulose, chitin)
Stereoisomers
edit- Bond angles of carbon point to corners of a tetrahedron
- When 4 different groups are attached to a carbon, it is asymmetric, leading to various types of isomerism
- Stereoisomers: (D, L)
- Same chemical properties
- Different biological properties
- D sugars, L amino acids
- C-H bonds (nonpolar) instead of C-OH bonds as in carbohydrates
- High energy
- Hydrophobic (insoluble in water)
- Categories
- Fats: glycerol and three fatty acids
- Phospholipids: primary component of membranes
- Prostaglandins: chemical messengers (hormones)
- Steroids: membrane component; hormones
- Terpenes: pigments; structure
- Hydrocarbon chain
- Even number of C, 14->20
- Terminates in carboxyl group
- Saturated: contain maximum number of hydrogens (all single bonds); maximum energy
- Unsaturated: one or more double bonds
- Usually higher melting point
- Many common oils are polyunsaturated
- Polymer of amino acids
- 21 different amino acids found in proteins
- Sequence of amino acids determined by gene
- Amino acid sequence determines shape of molecule
- Linked by peptide bond (covalent)
- Functions
- regulate chemical reactions and cell processes [enzymes]
- form bone and muscle; various other tissues
- facilitate transport across cell membrane [carrier proteins]
- fight disease [antibodies]
- Motifs: folding patterns of secondary structure
- Domains: structural, functional part of protein often independent of another part; often encoded by different exons
- Shape determines protein's function
- 21 commonly found in proteins
- 21st is selenocysteine, not mentioned in text
- Common structure
- Amino group: NH2
- Carboxyl group: COOH
- R group- 4 different kinds of R groups
- acidic
- basic
- hydrophilic (polar)
- hydrophobic (nonpolar)
- Confer individual properties on amino acids
- List of amino acids
Structure
edit- Primary structure: the amino acid sequence
- Determines higher orders of structure
- Critical for structure and function of protein
- Secondary: stabilized by intramolecular hydrogen bonding
- helix
- sheet
- Tertiary: folding, stabilized by ionic bonds (between R groups), hydrogen bonding, van der Waal's forces, hydrophobic interactions
- Quaternary: _ 2 polypeptides
Function
edit- Requires proper folding, cofactors, pH, temperature, etc.
- Proteins are often modified after synthesis
- Chemical modification
- Addition of heme groups (hemoglobin, cytochrome)
- Denatured proteins can not function properly
- Proteins are degraded by proteosome as part of constant turnover of cell components
Hereditary (Genetic) information
edit- Nucleic acids
- DNA: deoxyribonucleic acid
- Hereditary information of all cells
- Hereditary information for many viruses
- RNA: ribonucleic acid
- Hereditary information of certain viruses (HIV)
- Intermediate in gene expression
- Composed of nucleotides
- Ribonucleotides
- Deoxyribonucleotides
RNA DNA origin
edit- Which came first?
- Paradox: DNA encodes protein necessary for its own replication
- Discovery of catalytic RNA by Cech and Altman suggested that RNA might have been first self-replicating molecule
- DNA evolved as more stable type of storage molecule
Proteins: Their building block is amino acids. The bond connecting 2 of the amino acids together are called peptide bonds. One of these bonds makes a monopeptide, two a dipeptide, and any more than that makes a polypeptide.
References
editThis text is based on notes very generously donated by Dr. Paul Doerder, Ph.D., of the Cleveland State University.