File:Inductive proofs of properties of add, mult from recursive definitions (exercise version).pdf

Original file(2,862 × 3,247 pixels, file size: 76 KB, MIME type: application/pdf)

Summary

Description
English: English: Shows recursive definitions of addition (+) and multiplication (*) on natural numbers and inductive proofs of commutativity, associativity, distributivity by Peano induction; some of the later ones are omitted as exercises. Also indicates which property is used in the proof of which other one.
Date
Source Adapted from File:Inductive proofs of properties of add, mult from recursive definitions.pdf
Author Adapted by me; the original is by User:Jochen_Burghardt.
LaTeX source code
\documentclass[10pt]{article}
 \usepackage[pdftex]{color}
 \usepackage[paperwidth=485mm,paperheight=550mm]{geometry}
 \usepackage{amssymb}
 \setlength{\topmargin}{-36mm}
 \setlength{\textwidth}{485mm}
 \setlength{\textheight}{550mm}
 \setlength{\evensidemargin}{0cm}
 \setlength{\oddsidemargin}{-23mm}
 \setlength{\parindent}{0cm}
 \setlength{\parskip}{1ex}
 \setlength{\unitlength}{1mm}
 \sloppy


 \begin{document}

 \definecolor{fLb}      {rgb}{0.70,0.50,0.50}   % label
 \definecolor{fCj}      {rgb}{0.00,0.00,0.00}   % conjecture
 \definecolor{fPr}      {rgb}{0.50,0.70,0.50}   % proof
 \definecolor{fRf}      {rgb}{0.50,0.50,0.70}   % reference
 \definecolor{fEq}      {rgb}{0.50,0.50,0.50}   % proof equality
 \definecolor{fLn}      {rgb}{0.99,0.00,0.00}   % "uses"-line
 \definecolor{fLg}      {rgb}{0.70,0.70,0.50}   % legend


 \newcommand{\lm}[1]{%                                  % lemma
        \begin{array}{r@{\;}ll}%
        #1%
        \end{array}%
 }

 \newcommand{\lb}[1]{%                                  % lemma label
        \multicolumn{3}{l}{\mbox{\textcolor{fLb}{\bf Lemma #1:}}}\\[1ex]%
 }

 \newcommand{\df}[1]{%                                  % definition label
        \multicolumn{3}{l}{\mbox{\textcolor{fLb}{\bf Definition #1:}}}\\[1ex]%
 }

 \newcommand{\cj}[2]{%                                  % conjecture
        & \multicolumn{2}{l}{\color{fCj}\mbox{\Huge $\mathbf{#1}$}}\\[1ex]
        \multicolumn{1}{l}{\color{fCj}\mbox{\Huge $\mathbf{=}$}}
        & \multicolumn{2}{l}{\color{fCj}\mbox{\Huge $\mathbf{#2}$}}\\[1ex]
 }

 \newcommand{\pr}[1]{%                                  % proof
        \multicolumn{3}{l}{%
                \mbox{\textcolor{fPr}{Proof by induction on $#1$:}}}\\%
 }

 \newcommand{\bc}{%                                     % base case
        \multicolumn{3}{l}{\mbox{\textcolor{fPr}{Base case:}}}\\%
 }

 \newcommand{\ic}{%                                     % inductive case
        \multicolumn{3}{l}{\mbox{\textcolor{fPr}{Inductive case:}}}\\%
 }

 \newcommand{\rs}[1]{%                                  % reason
        \mbox{\textcolor{fRf}{ by #1}}%
 }

 \color{fLn}
 \begin{picture}(0,0)%
 \thicklines%
 \put(035,390){\vector(0,-1){50}}% 5 - 7
 \put(055,260){\vector(2,-1){90}}% 7 - 11
 \put(200,175){\vector(1,-1){100}}% 11 - 12
 \put(150,390){\vector(-2,-1){100}}% 6 - 7
 \put(310,390){\vector(0,-1){50}}% 8 - 9
 \put(310,255){\vector(0,-1){50}}% 9 - 13
 \put(280,390){\vector(-1,-2){87}}% 8 - 11
 \put(420,435){\line(0,-1){320}}% 10 - 12
 \put(420,115){\vector(-2,-1){90}}% 10 - 12
 %
 \put(035.15,390.15){\line(0,-1){50}}% 5 - 7
 \put(055.15,260.15){\line(2,-1){90}}% 7 - 11
 \put(200.15,175.15){\line(1,-1){100}}% 11 - 12
 \put(150.15,390.15){\line(-2,-1){100}}% 6 - 7
 \put(310.15,390.15){\line(0,-1){50}}% 8 - 9
 \put(310.15,255.15){\line(0,-1){50}}% 9 - 13
 \put(280.15,390.15){\line(-1,-2){87}}% 8 - 11
 \put(420.15,435.15){\line(0,-1){320}}% 10 - 12
 \put(420.15,115.15){\line(-2,-1){90}}% 10 - 12
 %
 \put(034.85,389.85){\line(0,-1){50}}% 5 - 7
 \put(054.85,259.85){\line(2,-1){90}}% 7 - 11
 \put(199.85,174.85){\line(1,-1){100}}% 11 - 12
 \put(149.85,389.85){\line(-2,-1){100}}% 6 - 7
 \put(309.85,389.85){\line(0,-1){50}}% 8 - 9
 \put(309.85,254.85){\line(0,-1){50}}% 9 - 13
 \put(279.85,389.85){\line(-1,-2){87}}% 8 - 11
 \put(419.85,434.85){\line(0,-1){320}}% 10 - 12
 \put(419.85,114.85){\line(-2,-1){90}}% 10 - 12
 \end{picture}
 \color{fEq}
 $\begin{array}[b]{ccccccc}
   \rule{65mm}{0mm}
 & \rule{65mm}{0mm}
 & \rule{65mm}{0mm}
 & \rule{65mm}{0mm}
 & \rule{65mm}{0mm}
 & \rule{65mm}{0mm}
 & \rule{65mm}{0mm} \\
 %
 \lm{
 \df{1}
 \cj{x+0}{x}
 }
 %
 &
 &
 %
 \lm{
 \df{2}
 \cj{x+Sy}{S(x+y)}
 }
 %
 &
 &
 %
 \lm{
 \df{3}
 \cj{x \cdot 0}{0}
 }
 %
 &
 &
 %
 \lm{
 \df{4}
 \cj{x \cdot Sy}{x \cdot y+x}
 }
 %
 \\
 &
 &
 &
 &
 &
 &
 \\[50mm]
 %
 \lm{
 \lb{5}
 \cj{0+x}{x}
 \pr{x}
 \bc
   & 0+0                &                       \\
 = & 0          & \rs{Def.\ 1}  \\
 \ic
   & 0+Sx       &                       \\
 = & S(0+x)     & \rs{Def.\ 2}  \\
 = & Sx         & \rs{I.H.}     \\
 }
 %
 &
 &
 %
 \lm{
 \lb{6}
 \cj{Sx+y}{S(x+y)}
 \pr{y}
 \bc
   & Sx+0       &                       \\
 = & Sx         & \rs{Def.\ 1}  \\
 = & S(x+0)     & \rs{Def.\ 1}  \\
 \ic
   & Sx+Sy      &                       \\
 = & S(Sx+y)    & \rs{Def.\ 2}  \\
 = & ss(x+y)    & \rs{I.H.}     \\
 = & S(x+Sy)    & \rs{Def.\ 2}  \\
 }
 %
 &
 &
 %
 \lm{
 \lb{8}
 \cj{(x+y)+z}{x+(y+z)}
 \pr{z}
 \bc
   & (x+y)+0    &                       \\
 = & x+y                & \rs{Def.\ 1}  \\
 = & x+(y+0)    & \rs{Def.\ 1}  \\
 \ic
   & (x+y)+sz   &                       \\
 = & S((x+y)+z) & \rs{Def.\ 2}  \\
 = & S(x+(y+z)) & \rs{I.H.}     \\
 = & x+S(y+z)   & \rs{Def.\ 2}  \\
 = & x+(y+sz)   & \rs{Def.\ 2}  \\
 }
 %
 &
 &
 %
 \lm{
 \lb{10}
 \cj{0 \cdot x}{0}
 \pr{x}
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 }
 %
 \\
 &
 &
 &
 &
 &
 &
 \\[50mm]
 %
 \lm{
 \lb{7}
 \cj{x+y}{y+x}
 \pr{y}
 \bc
   & x+0                &                       \\
 = & x          & \rs{Def.\ 1}  \\
 = & 0+x                & \rs{Lem.\ 5}  \\
 \ic
   & x+Sy       &                       \\
 = & S(x+y)     & \rs{Def.\ 2}  \\
 = & S(y+x)     & \rs{I.H.}     \\
 = & Sy+x       & \rs{Lem.\ 6}  \\
 }
 %
 &
 &
 &
 &
 %
 \lm{
 \lb{9}
 \cj{x \cdot (y+z)}{x \cdot y+x \cdot z}
 \pr{z}
 \bc
   & x \cdot (y+0)      &                       \\
 = & x \cdot y          & \rs{Def.\ 1}  \\
 = & x \cdot y+0        & \rs{Def.\ 1}  \\
 = & x \cdot y+x \cdot 0        & \rs{Def.\ 3}  \\
 \ic
   & x \cdot (y+sz)     &                       \\
 = & x \cdot S(y+z)     & \rs{Def.\ 2}  \\
 = & x \cdot (y+z)+x    & \rs{Def.\ 4}  \\
 = & (x \cdot y+x \cdot z)+x    & \rs{I.H.}     \\
 = & x \cdot y+(x \cdot z+x)    & \rs{Lem.\ 8}  \\
 = & x \cdot y+x \cdot sz       & \rs{Def.\ 4}  \\
 }
 %
 &
 &
 \\
 &
 &
 &
 &
 &
 &
 \\[50mm]
 &
 &
 %
 \lm{
 \lb{11}
 \cj{Sx \cdot y}{x \cdot y+y}
 \pr{y}
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 }
 %
 &
 &
 %
 \lm{
 \lb{13}
 \cj{(x \cdot y) \cdot z}{x \cdot (y \cdot z)}
 \pr{z}
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 }
 %
 &&
 \\
 &
 &
 &
 &
 &
 &
 \\[50mm]
 \color{fLg}
 \begin{tabular}{ll|}
 \hline
 \multicolumn{2}{l|}{\bf Legend:}       \\
 $S(x)$ & Successor of $x$      \\
 Def. & Definition      \\
 Lem. & Lemma   \\
 I.H. & Induction Hypothesis    \\
 \multicolumn{2}{l|}{\bf Binding Priorities:}   \\
 %\multicolumn{2}{l}{$S$ , $ \cdot $ , $+$}     \\
 \multicolumn{2}{l|}{$Sx \cdot y+z$ denotes $((S(x)) \cdot y)+z$}       \\
 \multicolumn{2}{l|}{\bf Used Induction Scheme:}        \\
 If & $P(0)$    \\
 and & $P(x)$ always implies $P(Sx)$,   \\
 then & always $P(x)$.  \\
 &\\
 \multicolumn{2}{l|}{Red arrow: use of lemma}   \\
 \multicolumn{2}{l|}{Definition-uses omitted}   \\
 \end{tabular}
 &
 &
 &
 &
 %
 \lm{
 \lb{12}
 \cj{x \cdot y}{y \cdot x}
 \pr{y}
   \\
   \\
   \\
   \\
   \\
   \\
   \\
   \\
   \\
 }
 %
 &
 &
 \\
 \rule{0cm}{0cm}
 \\
 \end{array}$
\end{document}

Licensing

w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

Captions

Diagram of the relations between the main properties of addition and multiplication (exercise version)

6 February 2022

application/pdf

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current21:44, 6 February 2022Thumbnail for version as of 21:44, 6 February 20222,862 × 3,247 (76 KB)Felix QWUploaded a work by Adapted by me; the original is by User:Jochen_Burghardt. from Adapted from File:Inductive proofs of properties of add, mult from recursive definitions.pdf with UploadWizard

There are no pages that use this file.

Metadata