This page provides proofs for identities involving the totient function
φ
(
k
)
{\displaystyle \varphi (k)}
and the Möbius function
μ
(
k
)
{\displaystyle \mu (k)}
.
Sum of integers relatively prime to and less than or equal to n
edit
The proof of the identity
∑
1
≤
k
≤
n
(
k
,
n
)
=
1
k
=
1
2
φ
(
n
)
n
where
n
≥
2
{\displaystyle \sum _{1\leq k\leq n \atop (k,n)=1}k={\frac {1}{2}}\,\varphi (n)\,n\quad {\mbox{ where }}\quad n\geq 2}
uses the fact that
(
k
,
n
)
=
d
⇔
(
n
−
k
,
n
)
=
d
{\displaystyle (k,n)=d\quad \Leftrightarrow \quad (n-k,n)=d}
because
if
d
|
n
{\displaystyle d|n}
and
d
|
k
{\displaystyle d|k}
then
d
|
n
−
k
{\displaystyle d|n-k}
and
if
d
|
n
{\displaystyle d|n}
and
d
|
(
n
−
k
)
{\displaystyle d|(n-k)}
then
d
|
n
−
(
n
−
k
)
=
k
.
{\displaystyle d|n-(n-k)=k.}
This means that for
n
>
2
{\displaystyle n>2}
we may group the k that are relatively prime to n into pairs
(
k
,
n
−
k
)
where
k
<
n
−
k
.
{\displaystyle (k,n-k)\quad {\mbox{ where }}\quad k<n-k.}
.
The case
k
=
n
/
2
{\displaystyle k=n/2}
does not occur because
n
/
2
{\displaystyle n/2}
is not an integer when n is odd, and when n is even, we have
(
n
/
2
,
n
)
=
n
/
2
>
1
{\displaystyle (n/2,n)=n/2>1}
because we assumed that
n
>
2.
{\displaystyle n>2.}
There are
φ
(
n
)
2
{\displaystyle {\frac {\varphi (n)}{2}}}
such pairs, and the constituents of each pair sum to
k
+
n
−
k
=
n
,
{\displaystyle k\;+\;n-k\;=n,}
hence
∑
(
k
,
n
)
=
1
k
=
1
2
φ
(
n
)
n
where
n
≥
3.
{\displaystyle \sum _{(k,n)=1}k={\frac {1}{2}}\,\varphi (n)\,n\quad {\mbox{ where }}\quad n\geq 3.}
The case
n
=
2
{\displaystyle n=2}
is verified by direct substitution and may be included in the formula.
Proofs of totient identities involving the floor function
edit
The proof of the identity
∑
k
=
1
n
φ
(
k
)
k
=
∑
k
=
1
n
μ
(
k
)
k
⌊
n
k
⌋
{\displaystyle \sum _{k=1}^{n}{\frac {\varphi (k)}{k}}=\sum _{k=1}^{n}{\frac {\mu (k)}{k}}\left\lfloor {\frac {n}{k}}\right\rfloor }
is by mathematical induction on
n
{\displaystyle n}
.
The base case is
n
=
1
{\displaystyle n=1}
and we see that the claim holds:
φ
(
1
)
/
1
=
1
=
μ
(
1
)
1
⌊
1
⌋
.
{\displaystyle \varphi (1)/1=1={\frac {\mu (1)}{1}}\left\lfloor 1\right\rfloor .}
For the induction step we need to prove that
φ
(
n
+
1
)
n
+
1
=
∑
k
=
1
n
μ
(
k
)
k
(
⌊
n
+
1
k
⌋
−
⌊
n
k
⌋
)
+
μ
(
n
+
1
)
n
+
1
.
{\displaystyle {\frac {\varphi (n+1)}{n+1}}=\sum _{k=1}^{n}{\frac {\mu (k)}{k}}\left(\left\lfloor {\frac {n+1}{k}}\right\rfloor -\left\lfloor {\frac {n}{k}}\right\rfloor \right)+{\frac {\mu (n+1)}{n+1}}.}
The key observation is that
⌊
n
+
1
k
⌋
−
⌊
n
k
⌋
=
{
1
,
if
k
|
(
n
+
1
)
0
,
otherwise,
{\displaystyle \left\lfloor {\frac {n+1}{k}}\right\rfloor -\left\lfloor {\frac {n}{k}}\right\rfloor \;=\;{\begin{cases}1,&{\mbox{if }}k|(n+1)\\0,&{\mbox{otherwise, }}\end{cases}}}
so that the sum is
∑
k
|
n
+
1
,
k
<
n
+
1
μ
(
k
)
k
+
μ
(
n
+
1
)
n
+
1
=
∑
k
|
n
+
1
μ
(
k
)
k
.
{\displaystyle \sum _{k|n+1,\;k<n+1}{\frac {\mu (k)}{k}}+{\frac {\mu (n+1)}{n+1}}=\sum _{k|n+1}{\frac {\mu (k)}{k}}.}
Now the fact that
∑
k
|
n
+
1
μ
(
k
)
k
=
φ
(
n
+
1
)
n
+
1
{\displaystyle \sum _{k|n+1}{\frac {\mu (k)}{k}}={\frac {\varphi (n+1)}{n+1}}}
is a basic totient identity. To see that it holds, let
p
1
v
1
p
2
v
2
…
p
q
v
q
{\displaystyle p_{1}^{v_{1}}p_{2}^{v_{2}}\ldots p_{q}^{v_{q}}}
be the prime factorization of n+1. Then
φ
(
n
+
1
)
n
+
1
=
∏
l
=
1
q
(
1
−
1
p
l
)
=
∑
k
|
n
+
1
μ
(
k
)
k
{\displaystyle {\frac {\varphi (n+1)}{n+1}}=\prod _{l=1}^{q}\left(1-{\frac {1}{p_{l}}}\right)=\sum _{k|n+1}{\frac {\mu (k)}{k}}}
by definition of
μ
(
k
)
.
{\displaystyle \mu (k).}
This concludes the proof.
An alternate proof proceeds by substituting
φ
(
k
)
k
=
∑
d
|
k
μ
(
d
)
d
{\displaystyle {\frac {\varphi (k)}{k}}=\sum _{d|k}{\frac {\mu (d)}{d}}}
directly into the left side of the identity, giving
∑
k
=
1
n
∑
d
|
k
μ
(
d
)
d
.
{\displaystyle \sum _{k=1}^{n}\sum _{d|k}{\frac {\mu (d)}{d}}.}
Now we ask how often the term
μ
(
d
)
d
{\displaystyle {\begin{matrix}{\frac {\mu (d)}{d}}\end{matrix}}}
occurs in the double sum.
The answer is that it occurs for every multiple
k
{\displaystyle k}
of
d
{\displaystyle d}
, but there are precisely
⌊
n
d
⌋
{\displaystyle {\begin{matrix}\left\lfloor {\frac {n}{d}}\right\rfloor \end{matrix}}}
such multiples, which means that the sum is
∑
d
=
1
n
μ
(
d
)
d
⌊
n
d
⌋
{\displaystyle \sum _{d=1}^{n}{\frac {\mu (d)}{d}}\left\lfloor {\frac {n}{d}}\right\rfloor }
as claimed.
The trick where zero values of
⌊
n
+
1
k
⌋
−
⌊
n
k
⌋
{\displaystyle {\begin{matrix}\left\lfloor {\frac {n+1}{k}}\right\rfloor -\left\lfloor {\frac {n}{k}}\right\rfloor \end{matrix}}}
are filtered out may also be used to prove the identity
∑
k
=
1
n
φ
(
k
)
=
1
2
(
1
+
∑
k
=
1
n
μ
(
k
)
⌊
n
k
⌋
2
)
.
{\displaystyle \sum _{k=1}^{n}\varphi (k)={\frac {1}{2}}\left(1+\sum _{k=1}^{n}\mu (k)\left\lfloor {\frac {n}{k}}\right\rfloor ^{2}\right).}
The base case is
n
=
1
{\displaystyle n=1}
and we have
φ
(
1
)
=
1
=
1
2
(
1
+
μ
(
1
)
⌊
1
1
⌋
2
)
{\displaystyle \varphi (1)=1={\frac {1}{2}}\left(1+\mu (1)\left\lfloor {\frac {1}{1}}\right\rfloor ^{2}\right)}
and it holds. The induction step requires us to show that
φ
(
n
+
1
)
=
1
2
∑
k
=
1
n
μ
(
k
)
(
⌊
n
+
1
k
⌋
2
−
⌊
n
k
⌋
2
)
+
1
2
μ
(
n
+
1
)
⌊
n
+
1
n
+
1
⌋
2
.
{\displaystyle \varphi (n+1)={\frac {1}{2}}\sum _{k=1}^{n}\mu (k)\left(\left\lfloor {\frac {n+1}{k}}\right\rfloor ^{2}-\left\lfloor {\frac {n}{k}}\right\rfloor ^{2}\right)\;+\;{\frac {1}{2}}\;\mu (n+1)\;\left\lfloor {\frac {n+1}{n+1}}\right\rfloor ^{2}.}
Next observe that
⌊
n
+
1
k
⌋
2
−
⌊
n
k
⌋
2
=
{
2
n
+
1
k
−
1
,
if
k
|
(
n
+
1
)
0
,
otherwise.
{\displaystyle \left\lfloor {\frac {n+1}{k}}\right\rfloor ^{2}-\left\lfloor {\frac {n}{k}}\right\rfloor ^{2}\;=\;{\begin{cases}2{\frac {n+1}{k}}-1,&{\mbox{if }}k|(n+1)\\0,&{\mbox{otherwise.}}\end{cases}}}
This gives the following for the sum
1
2
∑
k
|
n
+
1
,
k
<
n
+
1
μ
(
k
)
(
2
n
+
1
k
−
1
)
+
1
2
μ
(
n
+
1
)
=
1
2
∑
k
|
n
+
1
μ
(
k
)
(
2
n
+
1
k
−
1
)
.
{\displaystyle {\frac {1}{2}}\sum _{k|n+1,\;k<n+1}\mu (k)\left(2{\frac {n+1}{k}}-1\right)\;+\;{\frac {1}{2}}\;\mu (n+1)={\frac {1}{2}}\sum _{k|n+1}\mu (k)\left(2\;{\frac {n+1}{k}}-1\right).}
Treating the two inner terms separately, we get
(
n
+
1
)
∑
k
|
n
+
1
μ
(
k
)
k
−
1
2
∑
k
|
n
+
1
μ
(
k
)
.
{\displaystyle (n+1)\sum _{k|n+1}{\frac {\mu (k)}{k}}-{\frac {1}{2}}\sum _{k|n+1}\mu (k).}
The first of these two is precisely
φ
(
n
+
1
)
{\displaystyle \varphi (n+1)}
as we saw earlier, and the second is zero, by a basic property of the Möbius function (using the same factorization of
n
+
1
{\displaystyle n+1}
as above, we have
∑
k
|
n
+
1
μ
(
k
)
=
∏
l
=
1
q
(
1
−
1
)
=
0
{\displaystyle {\begin{matrix}\sum _{k|n+1}\mu (k)=\prod _{l=1}^{q}(1-1)=0\end{matrix}}}
.) This concludes the proof.
This result may also be proved by inclusion-exclusion. Rewrite the identity as
−
1
+
2
∑
k
=
1
n
φ
(
k
)
=
∑
k
=
1
n
μ
(
k
)
⌊
n
k
⌋
2
.
{\displaystyle -1+2\sum _{k=1}^{n}\varphi (k)=\sum _{k=1}^{n}\mu (k)\left\lfloor {\frac {n}{k}}\right\rfloor ^{2}.}
Now we see that the left side counts the number of lattice points (a , b ) in [1,n ] × [1,n ] where a and b are relatively prime to each other. Using the sets
A
p
{\displaystyle A_{p}}
where p is a prime less than or equal to n to denote the set of points where both coordinates are divisible by p we have
|
⋃
p
A
p
|
=
∑
p
|
A
p
|
−
∑
p
<
q
|
A
p
∩
A
q
|
+
∑
p
<
q
<
r
|
A
p
∩
A
q
∩
A
r
|
−
⋯
±
|
A
p
∩
⋯
∩
A
s
|
.
{\displaystyle \left|\bigcup _{p}A_{p}\right|=\sum _{p}\left|A_{p}\right|\;-\;\sum _{p<q}\left|A_{p}\cap A_{q}\right|\;+\;\sum _{p<q<r}\left|A_{p}\cap A_{q}\cap A_{r}\right|\;-\;\cdots \;\pm \;\left|A_{p}\cap \;\cdots \;\cap A_{s}\right|.}
This formula counts the number of pairs where a and b are not relatively prime to each other.
The cardinalities are as follows:
|
A
p
|
=
⌊
n
p
⌋
2
,
|
A
p
∩
A
q
|
=
⌊
n
p
q
⌋
2
,
|
A
p
∩
A
q
∩
A
r
|
=
⌊
n
p
q
r
⌋
2
,
…
{\displaystyle \left|A_{p}\right|=\left\lfloor {\frac {n}{p}}\right\rfloor ^{2},\;\left|A_{p}\cap A_{q}\right|=\left\lfloor {\frac {n}{pq}}\right\rfloor ^{2},\;\left|A_{p}\cap A_{q}\cap A_{r}\right|=\left\lfloor {\frac {n}{pqr}}\right\rfloor ^{2},\;\ldots }
and the signs are
−
μ
(
p
q
r
⋯
)
{\displaystyle {\begin{matrix}-\mu (pqr\cdots )\end{matrix}}}
, hence the number of points with relatively prime coordinates is
μ
(
1
)
n
2
+
∑
p
μ
(
p
)
⌊
n
p
⌋
2
+
∑
p
<
q
μ
(
p
q
)
⌊
n
p
q
⌋
2
+
∑
p
<
q
<
r
μ
(
p
q
r
)
⌊
n
p
q
r
⌋
2
+
⋯
{\displaystyle \mu (1)\,n^{2}\;+\;\sum _{p}\mu (p)\left\lfloor {\frac {n}{p}}\right\rfloor ^{2}\;+\;\sum _{p<q}\mu (pq)\left\lfloor {\frac {n}{pq}}\right\rfloor ^{2}\;+\;\sum _{p<q<r}\mu (pqr)\left\lfloor {\frac {n}{pqr}}\right\rfloor ^{2}\;+\;\cdots }
but this is precisely
∑
k
=
1
n
μ
(
k
)
⌊
n
k
⌋
2
{\displaystyle \sum _{k=1}^{n}\mu (k)\left\lfloor {\frac {n}{k}}\right\rfloor ^{2}}
and we have the claim.
Average order of the totient
edit
We will use the last formula of the preceding section to prove the following result:
1
n
2
∑
k
=
1
n
φ
(
k
)
=
3
π
2
+
O
(
log
n
n
)
{\displaystyle {\frac {1}{n^{2}}}\sum _{k=1}^{n}\varphi (k)={\frac {3}{\pi ^{2}}}+{\mathcal {O}}\left({\frac {\log n}{n}}\right)}
Using
x
−
1
<
⌊
x
⌋
≤
x
{\displaystyle x-1<\lfloor x\rfloor \leq x}
we have the upper bound
1
2
n
2
(
1
+
∑
k
=
1
n
μ
(
k
)
n
2
k
2
)
=
1
2
n
2
+
1
2
∑
k
=
1
n
μ
(
k
)
k
2
{\displaystyle {\frac {1}{2n^{2}}}\left(1+\sum _{k=1}^{n}\mu (k){\frac {n^{2}}{k^{2}}}\right)={\frac {1}{2n^{2}}}+{\frac {1}{2}}\sum _{k=1}^{n}{\frac {\mu (k)}{k^{2}}}}
and the lower bound
1
2
n
2
(
1
+
∑
k
=
1
n
μ
(
k
)
(
n
2
k
2
−
2
n
k
+
1
)
)
{\displaystyle {\frac {1}{2n^{2}}}\left(1+\sum _{k=1}^{n}\mu (k)\left({\frac {n^{2}}{k^{2}}}-2{\frac {n}{k}}+1\right)\right)}
which is
1
2
n
2
+
1
2
∑
k
=
1
n
μ
(
k
)
k
2
−
1
n
∑
k
=
1
n
μ
(
k
)
k
+
1
2
n
2
∑
k
=
1
n
μ
(
k
)
{\displaystyle {\frac {1}{2n^{2}}}+{\frac {1}{2}}\sum _{k=1}^{n}{\frac {\mu (k)}{k^{2}}}-{\frac {1}{n}}\sum _{k=1}^{n}{\frac {\mu (k)}{k}}+{\frac {1}{2n^{2}}}\sum _{k=1}^{n}\mu (k)}
Working with the last two terms and using the asymptotic expansion of the nth
harmonic number we have
−
1
n
∑
k
=
1
n
μ
(
k
)
k
>
−
1
n
∑
k
=
1
n
1
k
=
−
1
n
H
n
>
−
1
n
(
log
n
+
1
)
{\displaystyle -{\frac {1}{n}}\sum _{k=1}^{n}{\frac {\mu (k)}{k}}>-{\frac {1}{n}}\sum _{k=1}^{n}{\frac {1}{k}}=-{\frac {1}{n}}H_{n}>-{\frac {1}{n}}(\log n+1)}
and
1
2
n
2
∑
k
=
1
n
μ
(
k
)
>
−
1
2
n
.
{\displaystyle {\frac {1}{2n^{2}}}\sum _{k=1}^{n}\mu (k)>-{\frac {1}{2n}}.}
Now we check the order of the terms in the upper and lower bound. The term
∑
k
=
1
n
μ
(
k
)
k
2
{\displaystyle {\begin{matrix}\sum _{k=1}^{n}{\frac {\mu (k)}{k^{2}}}\end{matrix}}}
is
O
(
1
)
{\displaystyle {\mathcal {O}}(1)}
by comparison with
ζ
(
2
)
{\displaystyle \zeta (2)}
, where
ζ
(
s
)
{\displaystyle \zeta (s)}
is the Riemann zeta function.
The next largest term is the logarithmic term from the lower bound.
So far we have shown that
1
n
2
∑
k
=
1
n
φ
(
k
)
=
1
2
∑
k
=
1
n
μ
(
k
)
k
2
+
O
(
log
n
n
)
{\displaystyle {\frac {1}{n^{2}}}\sum _{k=1}^{n}\varphi (k)={\frac {1}{2}}\sum _{k=1}^{n}{\frac {\mu (k)}{k^{2}}}+{\mathcal {O}}\left({\frac {\log n}{n}}\right)}
It remains to evaluate
∑
k
=
1
n
μ
(
k
)
k
2
{\displaystyle {\begin{matrix}\sum _{k=1}^{n}{\frac {\mu (k)}{k^{2}}}\end{matrix}}}
asymptotically, which we have seen converges.
The Euler product for the Riemann zeta function is
ζ
(
s
)
=
∏
p
(
1
−
1
p
s
)
−
1
for
ℜ
(
s
)
>
1.
{\displaystyle \zeta (s)=\prod _{p}\left(1-{\frac {1}{p^{s}}}\right)^{-1}{\mbox{ for }}\Re (s)>1.}
Now it follows immediately from the definition of the Möbius function that
1
ζ
(
s
)
=
∏
p
(
1
−
1
p
s
)
=
∑
n
≥
1
μ
(
n
)
n
s
.
{\displaystyle {\frac {1}{\zeta (s)}}=\prod _{p}\left(1-{\frac {1}{p^{s}}}\right)=\sum _{n\geq 1}{\frac {\mu (n)}{n^{s}}}.}
This means that
1
2
∑
k
=
1
n
μ
(
k
)
k
2
=
1
2
1
ζ
(
2
)
+
O
(
1
n
)
{\displaystyle {\frac {1}{2}}\sum _{k=1}^{n}{\frac {\mu (k)}{k^{2}}}={\frac {1}{2}}{\frac {1}{\zeta (2)}}+{\mathcal {O}}\left({\frac {1}{n}}\right)}
where the integral
∫
n
+
1
∞
1
t
2
d
t
{\displaystyle {\begin{matrix}\int _{n+1}^{\infty }{\frac {1}{t^{2}}}dt\end{matrix}}}
was used to estimate
∑
k
>
n
μ
(
k
)
k
2
.
{\displaystyle {\begin{matrix}\sum _{k>n}{\frac {\mu (k)}{k^{2}}}\end{matrix}}.}
But
1
2
1
ζ
(
2
)
=
3
π
2
{\displaystyle {\begin{matrix}{\frac {1}{2}}{\frac {1}{\zeta (2)}}={\frac {3}{\pi ^{2}}}\end{matrix}}}
and we have established the claim.
Average order of φ(n )/n
edit
The material of the preceding section, together with the identity
∑
k
=
1
n
φ
(
k
)
k
=
∑
k
=
1
n
μ
(
k
)
k
⌊
n
k
⌋
{\displaystyle \sum _{k=1}^{n}{\frac {\varphi (k)}{k}}=\sum _{k=1}^{n}{\frac {\mu (k)}{k}}\left\lfloor {\frac {n}{k}}\right\rfloor }
also yields a proof that
1
n
∑
k
=
1
n
φ
(
k
)
k
=
6
π
2
+
O
(
log
n
n
)
.
{\displaystyle {\frac {1}{n}}\sum _{k=1}^{n}{\frac {\varphi (k)}{k}}={\frac {6}{\pi ^{2}}}+{\mathcal {O}}\left({\frac {\log n}{n}}\right).}
Reasoning as before, we have the upper bound
1
n
∑
k
=
1
n
μ
(
k
)
k
n
k
=
∑
k
=
1
n
μ
(
k
)
k
2
{\displaystyle {\frac {1}{n}}\sum _{k=1}^{n}{\frac {\mu (k)}{k}}{\frac {n}{k}}=\sum _{k=1}^{n}{\frac {\mu (k)}{k^{2}}}}
and the lower bound
−
1
n
∑
k
=
1
n
μ
(
k
)
k
+
∑
k
=
1
n
+
1
μ
(
k
)
k
2
.
{\displaystyle -{\frac {1}{n}}\sum _{k=1}^{n}{\frac {\mu (k)}{k}}+\sum _{k=1}^{n+1}{\frac {\mu (k)}{k^{2}}}.}
Now apply the estimates from the preceding section to obtain the result.
We first show that
lim
inf
φ
(
n
)
n
=
0
and
lim
sup
φ
(
n
)
n
=
1.
{\displaystyle \lim \inf {\frac {\varphi (n)}{n}}=0{\mbox{ and }}\lim \sup {\frac {\varphi (n)}{n}}=1.}
The latter holds because when n is a power of a prime p , we have
φ
(
n
)
n
=
1
−
1
p
,
{\displaystyle {\frac {\varphi (n)}{n}}=1-{\frac {1}{p}},}
which gets arbitrarily close to 1 for p large enough (and we can take p as large as we please since there are infinitely many primes).
To see the former, let n k be the product of the first k primes,
call them
p
1
,
p
2
,
.
.
.
,
p
k
{\displaystyle p_{1},p_{2},...,p_{k}}
. Let
r
k
=
φ
(
n
k
)
n
k
=
∏
i
=
1
k
(
1
−
1
p
i
)
.
{\displaystyle r_{k}={\frac {\varphi (n_{k})}{n_{k}}}=\prod _{i=1}^{k}\left(1-{\frac {1}{p_{i}}}\right).}
Then
1
r
k
=
∏
i
=
1
k
(
1
−
1
p
i
)
−
1
>
∑
m
=
1
p
k
1
m
=
H
p
k
,
{\displaystyle {\frac {1}{r_{k}}}=\prod _{i=1}^{k}\left(1-{\frac {1}{p_{i}}}\right)^{-1}>\sum _{m=1}^{p_{k}}{\frac {1}{m}}=H_{p_{k}},}
a harmonic number. Hence, by the well-known bound
H
n
>
log
n
{\displaystyle H_{n}>\log n}
, we have
1
r
k
>
log
p
k
.
{\displaystyle {\frac {1}{r_{k}}}>\log p_{k}.}
Since the logarithm is unbounded, taking k arbitrarily large ensures that r k achieves values arbitrarily close to zero.
We use the same factorization of n as in the first section to prove that
6
n
2
π
2
<
φ
(
n
)
σ
(
n
)
<
n
2
{\displaystyle {\frac {6n^{2}}{\pi ^{2}}}<\varphi (n)\sigma (n)<n^{2}}
.
Note that
φ
(
n
)
σ
(
n
)
=
n
∏
l
=
1
q
(
1
−
1
p
l
)
∏
l
=
1
q
p
l
v
l
+
1
−
1
p
l
−
1
=
n
∏
l
=
1
q
p
l
−
1
p
l
p
l
v
l
+
1
−
1
p
l
−
1
{\displaystyle \varphi (n)\sigma (n)=n\prod _{l=1}^{q}\left(1-{\frac {1}{p_{l}}}\right)\prod _{l=1}^{q}{\frac {p_{l}^{v_{l}+1}-1}{p_{l}-1}}=n\prod _{l=1}^{q}{\frac {p_{l}-1}{p_{l}}}\;{\frac {p_{l}^{v_{l}+1}-1}{p_{l}-1}}}
which is
n
∏
l
=
1
q
(
p
l
v
l
−
1
p
l
)
=
n
2
∏
l
=
1
q
(
1
−
1
p
l
v
l
+
1
)
.
{\displaystyle n\prod _{l=1}^{q}\left(p_{l}^{v_{l}}-{\frac {1}{p_{l}}}\right)=n^{2}\prod _{l=1}^{q}\left(1-{\frac {1}{p_{l}^{v_{l}+1}}}\right).}
The upper bound follows immediately since
∏
l
=
1
q
(
1
−
1
p
l
v
l
+
1
)
<
1.
{\displaystyle \prod _{l=1}^{q}\left(1-{\frac {1}{p_{l}^{v_{l}+1}}}\right)<1.}
We come arbitrarily close to this bound when n is prime.
For the lower bound, note that
∏
l
=
1
q
(
1
−
1
p
l
v
l
+
1
)
≥
∏
l
=
1
q
(
1
−
1
p
l
2
)
>
∏
p
(
1
−
1
p
2
)
,
{\displaystyle \prod _{l=1}^{q}\left(1-{\frac {1}{p_{l}^{v_{l}+1}}}\right)\geq \prod _{l=1}^{q}\left(1-{\frac {1}{p_{l}^{2}}}\right)>\prod _{p}\left(1-{\frac {1}{p^{2}}}\right),}
where the product is over all primes. We have already seen this product, as in
∏
p
(
1
−
1
p
s
)
=
∑
n
≥
1
μ
(
n
)
n
s
=
1
ζ
(
s
)
{\displaystyle \prod _{p}\left(1-{\frac {1}{p^{s}}}\right)=\sum _{n\geq 1}{\frac {\mu (n)}{n^{s}}}={\frac {1}{\zeta (s)}}}
so that
∏
p
(
1
−
1
p
2
)
=
1
ζ
(
2
)
=
6
π
2
{\displaystyle \prod _{p}\left(1-{\frac {1}{p^{2}}}\right)={\frac {1}{\zeta (2)}}={\frac {6}{\pi ^{2}}}}
and we have the claim. The values of n that come closest to this bound are products of the first k primes.