Let us assume that
π
{\displaystyle \pi }
is algebraic, so there exists a polynomial
P
(
z
)
=
a
0
+
a
1
z
+
a
2
z
2
+
⋯
+
a
d
z
d
∈
Q
[
z
]
,
(
a
0
≠
0
)
{\displaystyle P(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots +a_{d}z^{d}\in \mathbb {Q} [z],\quad (a_{0}\neq 0)}
such that
P
(
π
)
=
0
{\displaystyle P(\pi )=0}
.
Lemma: If
π
{\displaystyle \pi }
is algebraic, then
π
i
{\displaystyle \pi i}
is algebraic.
Proof: We get
P
(
±
i
z
)
=
a
0
+
a
1
(
±
i
z
)
+
a
2
(
±
i
z
)
2
+
⋯
+
a
d
(
±
i
z
)
d
=
(
a
0
−
a
2
z
2
+
⋯
)
±
(
a
1
z
−
a
3
z
3
+
⋯
)
i
{\displaystyle {\begin{aligned}P(\pm iz)&=a_{0}+a_{1}(\pm iz)+a_{2}(\pm iz)^{2}+\cdots +a_{d}(\pm iz)^{d}\\[5pt]&=(a_{0}-a_{2}z^{2}+\cdots \,)\pm (a_{1}z-a_{3}z^{3}+\cdots \,)\,i\end{aligned}}}
hence
π
i
{\displaystyle \pi i}
is a root of the polynomial
P
(
i
z
)
P
(
−
i
z
)
=
(
a
0
−
a
2
z
2
+
⋯
)
2
+
(
a
1
z
−
a
3
z
3
+
⋯
)
2
∈
Q
[
z
]
{\displaystyle P(iz)P(-iz)=(a_{0}-a_{2}z^{2}+\cdots \,)^{2}+(a_{1}z-a_{3}z^{3}+\cdots \,)^{2}\in \mathbb {Q} [z]}
◻
{\displaystyle \square }
Therefore, there exists a polynomial
P
1
∈
Q
[
z
]
{\displaystyle P_{1}\in \mathbb {Q} [z]}
of degree
n
{\displaystyle n}
with roots
z
1
,
…
,
z
n
{\displaystyle z_{1},\ldots ,z_{n}}
, such that
z
1
=
π
i
{\displaystyle z_{1}=\pi i}
.
By Euler's identity we have
e
π
i
+
1
=
0
{\displaystyle {\text{e}}^{\pi i}+1=0}
. Therefore:
0
=
(
e
z
1
+
1
)
(
e
z
2
+
1
)
⋯
(
e
z
n
+
1
)
=
∑
i
=
1
n
e
z
i
+
∑
1
≤
i
1
<
i
2
≤
n
e
z
i
1
e
z
i
2
+
∑
1
≤
i
1
<
i
2
<
i
3
≤
n
e
z
i
1
e
z
i
2
e
z
i
3
+
⋯
+
∑
1
≤
i
1
<
⋯
<
i
n
≤
n
e
z
i
1
⋯
e
z
i
n
+
1
=
∑
i
=
1
n
e
z
i
+
∑
1
≤
i
1
<
i
2
≤
n
e
z
i
1
+
z
i
2
+
∑
1
≤
i
1
<
i
2
<
i
3
≤
n
e
z
i
1
+
z
i
2
+
z
i
3
+
⋯
+
e
z
1
+
⋯
+
z
n
+
e
0
=
∑
i
=
1
2
n
e
β
i
{\displaystyle {\begin{aligned}0&=({\text{e}}^{z_{1}}\!+1)({\text{e}}^{z_{2}}\!+1)\cdots ({\text{e}}^{z_{n}}\!+1)\\[3pt]&=\sum _{i\,=\,1}^{n}{\text{e}}^{z_{i}}+\!\!\!\!\sum _{1\leq i_{1}<i_{2}\leq n}\!\!\!\!\!{\text{e}}^{z_{i_{1}}}{\text{e}}^{z_{i_{2}}}+\!\!\!\!\!\!\!\!\sum _{1\leq i_{1}<i_{2}<i_{3}\leq n}\!\!\!\!\!\!\!\!{\text{e}}^{z_{i_{1}}}{\text{e}}^{z_{i_{2}}}{\text{e}}^{z_{i_{3}}}\!+\cdots +\!\!\!\!\!\!\!\!\sum _{1\leq i_{1}<\cdots <i_{n}\leq n}\!\!\!\!\!\!\!\!\!{\text{e}}^{z_{i_{1}}}\!\cdots {\text{e}}^{z_{i_{n}}}\!+1\\[3pt]&=\sum _{i\,=\,1}^{n}{\text{e}}^{z_{i}}+\!\!\!\!\sum _{1\leq i_{1}<i_{2}\leq n}\!\!\!\!\!{\text{e}}^{z_{i_{1}}+\,z_{i_{2}}}+\!\!\!\!\!\!\!\!\sum _{1\leq i_{1}<i_{2}<i_{3}\leq n}\!\!\!\!\!\!\!\!{\text{e}}^{z_{i_{1}}+\,z_{i_{2}}+\,z_{i_{3}}}\!+\cdots +{\text{e}}^{z_{1}+\,\cdots \,+\,z_{n}}\!+{\text{e}}^{0}\\[3pt]&=\sum _{i\,=\,1}^{2^{n}}{\text{e}}^{\beta _{i}}\end{aligned}}}
The exponents are symmetric polynomial in
z
1
,
…
,
z
n
{\displaystyle z_{1},\ldots ,z_{n}}
, and among them are
1
≤
m
≤
2
n
−
1
{\displaystyle 1\leq m\leq 2^{n}-1}
non-zero sums. That is:
e
β
1
+
e
β
2
+
⋯
+
e
β
m
+
2
n
−
m
=
0
{\displaystyle {\text{e}}^{\beta _{1}}\!+{\text{e}}^{\beta _{2}}\!+\cdots +{\text{e}}^{\beta _{m}}\!+2^{n}\!-m=0}
As we previously learned , for all
0
≤
k
≤
n
{\displaystyle 0\leq k\leq n}
there exists a monic polynomial
P
k
∈
Q
[
z
]
{\displaystyle P_{k}\in \mathbb {Q} [z]}
of degree
(
n
k
)
{\displaystyle {\tbinom {n}{k}}}
such that its roots are the sums of every
k
{\displaystyle k}
of the roots
z
1
,
…
,
z
n
{\displaystyle z_{1},\ldots ,z_{n}}
. Therefore:
Q
(
z
)
=
P
0
(
z
)
P
1
(
z
)
⋯
P
n
(
z
)
∈
Q
[
z
]
=
(
z
−
β
1
)
(
z
−
β
2
)
⋯
(
z
−
β
m
)
⋯
(
z
−
β
2
n
)
=
z
2
n
−
m
(
z
−
β
1
)
(
z
−
β
2
)
⋯
(
z
−
β
m
)
{\displaystyle {\begin{aligned}Q(z)&=P_{0}(z)\,P_{1}(z)\cdots P_{n}(z)\in \mathbb {Q} [z]\\[5pt]&=(z-\beta _{1})(z-\beta _{2})\cdots (z-\beta _{m})\cdots (z-\beta _{2^{n}})\\[5pt]&=z^{2^{n}-\,m}(z-\beta _{1})(z-\beta _{2})\cdots (z-\beta _{m})\end{aligned}}}
After reduction we get that:
(
z
−
β
1
)
(
z
−
β
2
)
⋯
(
z
−
β
m
)
∈
Q
[
z
]
{\displaystyle (z-\beta _{1})(z-\beta _{2})\cdots (z-\beta _{m})\in \mathbb {Q} [z]}
Multiplying by the least common multiple
b
m
∈
Z
{\displaystyle b_{m}\!\in \mathbb {Z} }
of the rational coefficients, we get a polynomial of the form
B
(
z
)
=
b
m
(
z
−
β
1
)
(
z
−
β
2
)
⋯
(
z
−
β
m
)
=
b
m
z
m
+
b
m
−
1
z
m
−
1
+
⋯
+
b
1
z
+
b
0
∈
Z
[
z
]
{\displaystyle {\begin{aligned}B(z)&=b_{m}(z-\beta _{1})(z-\beta _{2})\cdots (z-\beta _{m})\\[5pt]&=b_{m}z^{m}+b_{m-1}z^{m-1}+\cdots +b_{1}z+b_{0}\in \mathbb {Z} [z]\end{aligned}}}
Let
f
(
z
)
{\displaystyle f(z)}
be a polynomial of degree
d
{\displaystyle d}
. Let us define
F
(
z
)
=
∑
j
=
0
d
f
(
j
)
(
z
)
{\displaystyle F(z)=\sum _{j\,=\,0}^{d}f^{(j)}\!(z)}
. Taking its derivative yields:
F
′
(
z
)
=
∑
j
=
0
d
f
(
j
+
1
)
(
z
)
=
∑
j
=
1
d
f
(
j
)
(
z
)
=
F
(
z
)
−
f
(
z
)
{\displaystyle F'\!(z)=\sum _{j\,=\,0}^{d}f^{(j+1)}\!(z)=\sum _{j\,=\,1}^{d}f^{(j)}\!(z)=F(z)-f(z)}
Let us define
G
(
z
)
=
e
−
z
F
(
z
)
{\displaystyle G(z)={\text{e}}^{-z}F(z)}
. Taking its derivative yields:
G
′
(
z
)
=
e
−
z
F
′
(
z
)
−
e
−
z
F
(
z
)
=
e
−
z
[
F
′
(
z
)
−
F
(
z
)
]
=
−
e
−
z
f
(
z
)
{\displaystyle G'\!(z)={\text{e}}^{-z}F'\!(z)-{\text{e}}^{-z}F(z)={\text{e}}^{-z}{\bigl [}F'\!(z)-F(z){\bigr ]}=-{\text{e}}^{-z}f(z)}
By fundamental theorem of calculus , we get:
G
(
z
)
−
G
(
0
)
=
e
−
z
F
(
z
)
−
e
−
0
F
(
0
)
=
−
∫
0
z
e
−
w
f
(
w
)
d
w
F
(
z
)
−
e
z
F
(
0
)
=
−
∫
0
z
e
z
−
w
f
(
w
)
d
w
{\displaystyle {\begin{aligned}G(z)-G(0)={\text{e}}^{-z}F(z)-{\text{e}}^{-0}F(0)&=-\!\int \limits _{0}^{z}{\text{e}}^{-w}f(w)dw\\F(z)-{\text{e}}^{z}F(0)&=-\!\int \limits _{0}^{z}{\text{e}}^{z-w}f(w)dw\end{aligned}}}
Now let:
F
(
β
i
)
−
e
β
i
F
(
0
)
=
−
∫
0
β
i
e
β
i
−
w
f
(
w
)
d
w
=
A
i
{\displaystyle F(\beta _{i})-{\text{e}}^{\beta _{i}}F(0)=-\!\int \limits _{0}^{\beta _{i}}{\text{e}}^{\beta _{i}-w}f(w)dw=A_{i}}
Summing all the terms yields:
∑
i
=
1
m
F
(
β
i
)
−
∑
i
=
1
m
e
β
i
F
(
0
)
=
∑
i
=
1
m
A
i
∑
i
=
1
m
F
(
β
i
)
−
F
(
0
)
∑
i
=
1
m
e
β
i
=
∑
i
=
1
m
A
i
(
2
n
−
m
)
F
(
0
)
+
∑
i
=
1
m
F
(
β
i
)
=
∑
i
=
1
m
A
i
{\displaystyle {\begin{aligned}\sum _{i\,=\,1}^{m}F(\beta _{i})-\sum _{i\,=\,1}^{m}{\text{e}}^{\beta _{i}}F(0)=\sum _{i\,=\,1}^{m}A_{i}\\[5pt]\sum _{i\,=\,1}^{m}F(\beta _{i})-F(0)\sum _{i\,=\,1}^{m}{\text{e}}^{\beta _{i}}=\sum _{i\,=\,1}^{m}A_{i}\\[5pt](2^{n}\!-m)F(0)+\sum _{i\,=\,1}^{m}F(\beta _{i})=\sum _{i\,=\,1}^{m}A_{i}\end{aligned}}}
Lemma: Let
f
(
z
)
{\displaystyle f(z)}
be a polynomial with a root
z
0
{\displaystyle z_{0}}
of multiplicity
d
≥
1
{\displaystyle d\geq 1}
. Then
f
(
j
)
(
z
0
)
=
0
{\displaystyle f^{(j)}\!(z_{0})=0}
for all
0
≤
j
≤
d
−
1
{\displaystyle 0\leq j\leq d-1}
.
Proof: By strong induction .
Let us write
f
(
z
)
=
(
z
−
z
0
)
d
Q
(
z
)
{\displaystyle f(z)=(z-z_{0})^{d}Q(z)}
, with
Q
(
z
)
{\displaystyle Q(z)}
a polynomial such that
Q
(
z
0
)
≠
0
{\displaystyle Q(z_{0})\neq 0}
.
For
d
=
1
{\displaystyle d=1}
we get:
f
(
0
)
(
z
0
)
=
f
(
z
0
)
=
0
{\displaystyle f^{(0)}\!(z_{0})=f(z_{0})=0}
Assume that for all
1
≤
d
≤
k
{\displaystyle 1\leq d\leq k}
the claim holds for all
0
≤
j
≤
d
−
1
{\displaystyle 0\leq j\leq d-1}
.
We shall prove that for
d
=
k
+
1
{\displaystyle d=k+1}
the claim holds for all
0
≤
j
≤
k
{\displaystyle 0\leq j\leq k}
:
f
(
z
)
=
(
z
−
z
0
)
k
+
1
Q
(
z
)
f
(
1
)
(
z
)
=
(
k
+
1
)
(
z
−
z
0
)
k
Q
(
z
)
+
(
z
−
z
0
)
k
+
1
Q
(
1
)
(
z
)
=
(
z
−
z
0
)
k
[
(
k
+
1
)
Q
(
z
)
+
(
z
−
z
0
)
Q
(
1
)
(
z
)
]
=
(
z
−
z
0
)
k
R
(
z
)
{\displaystyle {\begin{aligned}f(z)&=(z-z_{0})^{k+1}Q(z)\\[5pt]f^{(1)}\!(z)&=(k+1)(z-z_{0})^{k}Q(z)+(z-z_{0})^{k+1}Q^{(1)}\!(z)\\[5pt]&={\color {blue}(z-z_{0})^{k}}{\color {red}{\bigl [}(k+1)Q(z)+(z-z_{0})Q^{(1)}\!(z){\bigr ]}}\\[5pt]&={\color {blue}(z-z_{0})^{k}}{\color {red}R(z)}\end{aligned}}}
The blue part is of multiplicity
k
≥
1
{\displaystyle k\geq 1}
, with
R
(
z
)
{\displaystyle R(z)}
a polynomial such that
R
(
z
0
)
≠
0
{\displaystyle R(z_{0})\neq 0}
.
Hence their product satisfies the induction hypothesis.
◻
{\displaystyle \square }
Let us now define:
f
(
z
)
=
(
b
m
)
c
g
(
z
)
,
(
c
=
m
p
−
1
)
g
(
z
)
=
1
(
p
−
1
)
!
z
p
−
1
[
B
(
z
)
]
p
=
(
b
0
)
p
(
p
−
1
)
!
z
p
−
1
+
∑
k
=
p
p
+
c
d
k
(
p
−
1
)
!
z
k
,
(
d
k
∈
Z
)
{\displaystyle {\begin{aligned}f(z)&=(b_{m})^{c}g(z),\quad (c=mp-1)\\[5pt]g(z)&={\frac {1}{(p-1)!}}\,z^{p-1}{\bigl [}B(z){\bigr ]}^{p}\\[5pt]&={\frac {(b_{0})^{p}}{(p-1)!}}z^{p-1}+\sum _{k\,=\,p}^{p\,+\,c}{\frac {d_{k}}{(p-1)!}}z^{k},\quad (d_{k}\in \mathbb {Z} )\end{aligned}}}
and
p
{\displaystyle p}
is a prime number such that
p
>
max
{
b
0
,
b
m
,
2
n
−
m
}
{\displaystyle p>\max \!{\bigl \{}b_{0},b_{m},2^{n}\!-m{\bigr \}}}
. We get:
f
(
j
)
(
z
)
=
(
b
m
)
c
g
(
j
)
(
z
)
=
(
b
m
)
c
∑
k
=
j
p
+
c
j
!
(
p
−
1
)
!
(
k
j
)
d
k
z
k
−
j
,
(
0
≤
j
≤
p
+
c
)
{\displaystyle f^{(j)}\!(z)=(b_{m})^{c}g^{(j)}\!(z)=(b_{m})^{c}\sum _{k\,=\,j}^{p\,+\,c}{\frac {j!}{(p-1)!}}{\binom {k}{j}}d_{k}z^{k-j},\quad (0\leq j\leq p+c)}
hence for all
j
≥
p
{\displaystyle j\geq p}
, the function
f
(
j
)
(
z
)
{\displaystyle f^{(j)}\!(z)}
is a polynomial with integer coefficients all divisible by
p
{\displaystyle p}
.
By parts 1 and 3, we get:
N
=
(
2
n
−
m
)
F
(
0
)
+
∑
i
=
1
m
F
(
β
i
)
=
(
2
n
−
m
)
∑
j
=
0
p
+
c
f
(
j
)
(
0
)
+
∑
i
=
1
m
∑
j
=
0
p
+
c
f
(
j
)
(
β
i
)
=
(
2
n
−
m
)
∑
j
=
p
−
1
p
+
c
f
(
j
)
(
0
)
+
∑
i
=
1
m
∑
j
=
p
p
+
c
f
(
j
)
(
β
i
)
=
(
2
n
−
m
)
[
f
(
p
−
1
)
(
0
)
+
∑
j
=
p
p
+
c
f
(
j
)
(
0
)
]
+
∑
j
=
p
p
+
c
∑
i
=
1
m
f
(
j
)
(
β
i
)
=
(
2
n
−
m
)
(
b
0
)
p
(
b
m
)
c
+
(
2
n
−
m
)
∑
j
=
p
p
+
c
f
(
j
)
(
0
)
+
(
b
m
)
c
∑
j
=
p
p
+
c
∑
i
=
1
m
g
(
j
)
(
β
i
)
{\displaystyle {\begin{aligned}N&=(2^{n}\!-m)F(0)+\sum _{i\,=\,1}^{m}F(\beta _{i})\\[2pt]&=(2^{n}\!-m)\sum _{j\,=\,0}^{p\,+\,c}f^{(j)}\!(0)+\sum _{i\,=\,1}^{m}\sum _{j\,=\,0}^{p\,+\,c}f^{(j)}\!(\beta _{i})\\[2pt]&=(2^{n}\!-m)\!\!\sum _{j\,=\,p-1}^{p\,+\,c}\!\!\!f^{(j)}\!(0)+\sum _{i\,=\,1}^{m}\sum _{j\,=\,p}^{p\,+\,c}f^{(j)}\!(\beta _{i})\\[2pt]&=(2^{n}\!-m)\,{\bigg [}\,f^{(p-1)}\!(0)+\sum _{j\,=\,p}^{p\,+\,c}f^{(j)}\!(0)\,{\bigg ]}+\sum _{j\,=\,p}^{p\,+\,c}\sum _{i\,=\,1}^{m}f^{(j)}\!(\beta _{i})\\[2pt]&={\color {red}(2^{n}\!-m)(b_{0})^{p}(b_{m})^{c}}\!+{\color {green}(2^{n}\!-m)\sum _{j\,=\,p}^{p\,+\,c}f^{(j)}\!(0)}+{\color {blue}(b_{m})^{c}\sum _{j\,=\,p}^{p\,+\,c}\sum _{i\,=\,1}^{m}g^{(j)}\!(\beta _{i})}\end{aligned}}}
The red part is an integer not divisible by
p
{\displaystyle p}
.
The green part is an integer divisible by
p
{\displaystyle p}
.
The blue part is the most important:
By Vieta's formulae we get
E
k
(
β
→
m
)
=
(
−
1
)
k
b
m
−
k
b
m
∈
Q
,
(
1
≤
k
≤
m
)
{\displaystyle E_{k}({\vec {\beta }}{}^{m})=(-1)^{k}{\frac {b_{m-k}}{b_{m}}}\in \mathbb {Q} ,\quad (1\leq k\leq m)}
and the sums are symmetric polynomials in
β
1
,
…
,
β
m
{\displaystyle \beta _{1},\ldots ,\beta _{m}}
. Therefore, these can be expressed as polynomials
∑
i
=
1
m
g
(
j
)
(
β
i
)
=
G
j
(
E
→
m
(
β
→
m
)
)
∈
F
[
β
→
m
]
=
a
j
(
b
m
)
c
j
,
(
a
j
,
c
j
∈
Z
,
c
j
≥
0
)
{\displaystyle {\begin{aligned}\sum _{i\,=\,1}^{m}g^{(j)}\!(\beta _{i})&=G_{j}({\vec {E}}{}^{m}({\vec {\beta }}{}^{m}))\in \mathbb {F} [{\vec {\beta }}{}^{m}]\\&={\frac {a_{j}}{(b_{m})^{c_{j}}}},\quad (a_{j},c_{j}\in \mathbb {Z} ,\,c_{j}\geq 0)\end{aligned}}}
(
b
m
)
c
∑
j
=
p
p
+
c
∑
i
=
1
m
g
(
j
)
(
β
i
)
=
(
b
m
)
c
∑
j
=
p
p
+
c
a
j
(
b
m
)
c
j
=
∑
j
=
p
p
+
c
a
j
(
b
m
)
c
−
c
j
{\displaystyle {\color {blue}(b_{m})^{c}\sum _{j\,=\,p}^{p\,+\,c}\sum _{i\,=\,1}^{m}g^{(j)}\!(\beta _{i})}=(b_{m})^{c}\sum _{j\,=\,p}^{p\,+\,c}{\frac {a_{j}}{(b_{m})^{c_{j}}}}=\sum _{j\,=\,p}^{p\,+\,c}a_{j}(b_{m})^{c-c_{j}}}
In addition, we get:
deg
(
g
(
j
)
)
≤
c
⟹
deg
(
G
j
)
≤
c
,
(
p
≤
j
≤
p
+
c
)
⟹
0
≤
c
j
≤
c
⟹
(
b
m
)
c
−
c
j
∈
Z
{\displaystyle {\begin{aligned}\deg(g^{(j)})\leq c&\implies \deg(G_{j})\leq c,\quad (p\leq j\leq p+c)\\[3pt]&\implies 0\leq c_{j}\leq c\\[3pt]&\implies (b_{m})^{c-c_{j}}\in \mathbb {Z} \end{aligned}}}
Hence, the blue part is an integer divisible by
p
{\displaystyle p}
.
Conclusion:
N
{\displaystyle N}
is an integer not divisible by
p
{\displaystyle p}
, and particularly
N
≠
0
{\displaystyle N\neq 0}
.
By part 2, we get:
A
i
=
−
∫
0
β
i
e
β
i
−
w
f
(
w
)
d
w
{\displaystyle A_{i}=-\!\int \limits _{0}^{\beta _{i}}{\text{e}}^{\beta _{i}-w}f(w)dw}
By the triangle inequality for integrals, we get:
|
A
i
|
=
|
∫
0
β
i
e
β
i
−
w
f
(
w
)
d
w
|
≤
∫
0
β
i
|
e
β
i
−
w
|
|
f
(
w
)
|
|
d
w
|
=
∫
0
β
i
|
e
β
i
−
w
|
|
(
b
m
)
c
(
p
−
1
)
!
w
p
−
1
[
B
(
w
)
]
p
|
|
d
w
|
=
∫
0
β
i
|
e
β
i
−
w
|
|
b
m
|
|
b
m
|
m
p
|
w
|
p
−
1
|
B
(
w
)
|
p
(
p
−
1
)
!
|
d
w
|
{\displaystyle {\begin{aligned}|A_{i}|&={\Bigg |}\int \limits _{0}^{\beta _{i}}{\text{e}}^{\beta _{i}-w}f(w)dw\,{\Bigg |}\\[2pt]&\leq \int \limits _{0}^{\beta _{i}}\,{\bigl |}{\text{e}}^{\beta _{i}-w}{\bigr |}\,{\bigr |}f(w){\bigl |}\,|dw|\\[2pt]&=\int \limits _{0}^{\beta _{i}}{\bigl |}{\text{e}}^{\beta _{i}-w}{\bigr |}\left|{\frac {(b_{m})^{c}}{(p-1)!}}\,w^{p-1}{\bigl [}B(w){\bigr ]}^{p}\right||dw|\\[2pt]&=\int \limits _{0}^{\beta _{i}}{\frac {{\bigl |}{\text{e}}^{\beta _{i}-w}{\bigr |}}{|b_{m}|}}\,{\frac {|b_{m}|^{mp}|w|^{p-1}|B(w)|^{p}}{(p-1)!}}\,|dw|\end{aligned}}}
By the triangle inequality, we get:
0
<
|
N
|
=
|
∑
i
=
1
m
A
i
|
≤
∑
i
=
1
m
|
A
i
|
≤
∑
i
=
1
m
∫
0
β
i
|
e
β
i
−
w
|
|
b
m
|
|
b
m
|
m
p
|
w
|
p
−
1
|
B
(
w
)
|
p
(
p
−
1
)
!
|
d
w
|
{\displaystyle 0<|N|=\left|\,\sum _{i\,=\,1}^{m}A_{i}\right|\leq \sum _{i\,=\,1}^{m}|A_{i}|\leq \sum _{i\,=\,1}^{m}\,\int \limits _{0}^{\beta _{i}}{\frac {{\bigl |}{\text{e}}^{\beta _{i}-w}{\bigr |}}{|b_{m}|}}\,{\frac {|b_{m}|^{mp}|w|^{p-1}|B(w)|^{p}}{(p-1)!}}\,|dw|}
On the other hand, we get
lim
p
→
∞
|
b
m
|
m
p
|
w
|
p
−
1
|
B
(
w
)
|
p
(
p
−
1
)
!
=
0
,
(
w
∈
C
)
{\displaystyle \lim _{p\to \infty }{\frac {|b_{m}|^{mp}|w|^{p-1}|B(w)|^{p}}{(p-1)!}}=0,\quad (w\in \mathbb {C} )}
hence for sufficiently large
p
{\displaystyle p}
we get
0
<
|
N
|
<
1
{\displaystyle 0<|N|<1}
. A contradiction.
◻
{\displaystyle \square }
Conclusion:
π
i
{\displaystyle \pi i}
is transcendental, hence
π
{\displaystyle \pi }
is transcendental.
◼
{\displaystyle \blacksquare }