Home
Random
Log in
Settings
Donations
About Wikibooks
Disclaimers
Search
Engineering Tables/Table of Integrals
Language
Watch
Edit
<
Engineering Tables
This is a small summary of the identities found
Here
.
Integral
Value
1
∫
c
d
x
{\displaystyle \int c\,dx}
c
x
+
C
{\displaystyle cx+C}
2
∫
x
n
d
x
{\displaystyle \int x^{n}\,dx}
x
n
+
1
n
+
1
+
C
{\displaystyle {\frac {x^{n+1}}{n+1}}+C}
for
n
≠
−
1
{\displaystyle n\neq -1}
3
∫
1
x
d
x
{\displaystyle \int {\frac {1}{x}}\,dx}
ln
|
x
|
+
C
{\displaystyle \ln {\left|x\right|}+C}
4
∫
1
a
2
+
x
2
d
x
{\displaystyle \int {1 \over {a^{2}+x^{2}}}\,dx}
1
a
arctan
x
a
+
C
{\displaystyle {1 \over a}\arctan {x \over a}+C}
5
∫
1
a
2
−
x
2
d
x
{\displaystyle \int {1 \over {\sqrt {a^{2}-x^{2}}}}\,dx}
arcsin
x
a
+
C
{\displaystyle \arcsin {x \over a}+C}
6
∫
−
1
a
2
−
x
2
d
x
{\displaystyle \int {-1 \over {\sqrt {a^{2}-x^{2}}}}\,dx}
arccos
x
a
+
C
{\displaystyle \arccos {x \over a}+C}
7
∫
1
x
x
2
−
a
2
d
x
{\displaystyle \int {1 \over x{\sqrt {x^{2}-a^{2}}}}\,dx}
1
a
arcsec
|
x
|
a
+
C
{\displaystyle {1 \over a}\operatorname {arcsec} {|x| \over a}+C}
8
∫
ln
x
d
x
{\displaystyle \int \ln {x}\,dx}
x
ln
x
−
x
+
C
{\displaystyle x\ln {x}-x+C}
9
∫
log
b
x
d
x
{\displaystyle \int \log _{b}{x}\,dx}
x
log
b
x
−
x
log
b
e
+
C
{\displaystyle x\log _{b}{x}-x\log _{b}{e}+C}
10
∫
e
x
d
x
{\displaystyle \int e^{x}\,dx}
e
x
+
C
{\displaystyle e^{x}+C}
11
∫
a
x
d
x
{\displaystyle \int a^{x}\,dx}
a
x
ln
a
+
C
{\displaystyle {\frac {a^{x}}{\ln {a}}}+C}
12
∫
sin
x
d
x
{\displaystyle \int \sin {x}\,dx}
−
cos
x
+
C
{\displaystyle -\cos {x}+C}
13
∫
cos
x
d
x
{\displaystyle \int \cos {x}\,dx}
sin
x
+
C
{\displaystyle \sin {x}+C}
14
∫
tan
x
d
x
{\displaystyle \int \tan {x}\,dx}
−
ln
|
cos
x
|
+
C
{\displaystyle -\ln {\left|\cos {x}\right|}+C}
15
∫
cot
x
d
x
{\displaystyle \int \cot {x}\,dx}
ln
|
sin
x
|
+
C
{\displaystyle \ln {\left|\sin {x}\right|}+C}
16
∫
sec
x
d
x
{\displaystyle \int \sec {x}\,dx}
ln
|
sec
x
+
tan
x
|
+
C
{\displaystyle \ln {\left|\sec {x}+\tan {x}\right|}+C}
17
∫
csc
x
d
x
{\displaystyle \int \csc {x}\,dx}
−
ln
|
csc
x
+
cot
x
|
+
C
{\displaystyle -\ln {\left|\csc {x}+\cot {x}\right|}+C}
18
∫
sec
2
x
d
x
{\displaystyle \int \sec ^{2}x\,dx}
tan
x
+
C
{\displaystyle \tan x+C}
19
∫
csc
2
x
d
x
{\displaystyle \int \csc ^{2}x\,dx}
−
cot
x
+
C
{\displaystyle -\cot x+C}
20
∫
sec
x
tan
x
d
x
{\displaystyle \int \sec {x}\,\tan {x}\,dx}
sec
x
+
C
{\displaystyle \sec {x}+C}
21
∫
csc
x
cot
x
d
x
{\displaystyle \int \csc {x}\,\cot {x}\,dx}
−
csc
x
+
C
{\displaystyle -\csc {x}+C}
22
∫
sin
2
x
d
x
{\displaystyle \int \sin ^{2}x\,dx}
1
2
(
x
−
sin
x
cos
x
)
+
C
{\displaystyle {\frac {1}{2}}(x-\sin x\cos x)+C}
23
∫
cos
2
x
d
x
{\displaystyle \int \cos ^{2}x\,dx}
1
2
(
x
+
sin
x
cos
x
)
+
C
{\displaystyle {\frac {1}{2}}(x+\sin x\cos x)+C}
24
∫
sin
n
x
d
x
{\displaystyle \int \sin ^{n}x\,dx}
−
sin
n
−
1
x
cos
x
n
+
n
−
1
n
∫
sin
n
−
2
x
d
x
{\displaystyle -{\frac {\sin ^{n-1}{x}\cos {x}}{n}}+{\frac {n-1}{n}}\int \sin ^{n-2}{x}\,dx}
25
∫
cos
n
x
d
x
{\displaystyle \int \cos ^{n}x\,dx}
−
cos
n
−
1
x
sin
x
n
+
n
−
1
n
∫
cos
n
−
2
x
d
x
{\displaystyle -{\frac {\cos ^{n-1}{x}\sin {x}}{n}}+{\frac {n-1}{n}}\int \cos ^{n-2}{x}\,dx}
26
∫
arctan
x
d
x
{\displaystyle \int \arctan {x}\,dx}
x
arctan
x
−
1
2
ln
|
1
+
x
2
|
+
C
{\displaystyle x\,\arctan {x}-{\frac {1}{2}}\ln {\left|1+x^{2}\right|}+C}
27
∫
sinh
x
d
x
{\displaystyle \int \sinh x\,dx}
cosh
x
+
C
{\displaystyle \cosh x+C}
28
∫
cosh
x
d
x
{\displaystyle \int \cosh x\,dx}
sinh
x
+
C
{\displaystyle \sinh x+C}
29
∫
tanh
x
d
x
{\displaystyle \int \tanh x\,dx}
ln
|
cosh
x
|
+
C
{\displaystyle \ln \left|\cosh x\right|+C}
30
∫
csch
x
d
x
{\displaystyle \int \operatorname {csch} \,x\,dx}
ln
|
tanh
x
2
|
+
C
{\displaystyle \ln \left|\tanh {x \over 2}\right|+C}
31
∫
sech
x
d
x
{\displaystyle \int {\mbox{sech}}\,x\,dx}
arctan
(
sinh
x
)
+
C
{\displaystyle \arctan(\sinh x)+C}
32
∫
coth
x
d
x
{\displaystyle \int \coth x\,dx}
ln
|
sinh
x
|
+
C
{\displaystyle \ln \left|\sinh x\right|+C}