Home
Random
Log in
Settings
Donations
About Wikibooks
Disclaimers
Search
Engineering Tables/DTFT Transform Table
Language
Watch
Edit
<
Engineering Tables
Time domain
x
[
n
]
{\displaystyle x[n]\,}
where
n
∈
Z
{\displaystyle n\in \mathbb {Z} }
Frequency domain
X
(
e
j
ω
)
{\displaystyle X(e^{j\omega })}
where
ω
∈
R
{\displaystyle \omega \in \mathbb {R} }
Remarks
1
2
π
∫
−
π
π
X
(
e
j
ω
)
e
j
ω
n
d
ω
{\displaystyle {\frac {1}{2\pi }}\int _{-\pi }^{\pi }{X\left(e^{j\omega }\right)}e^{j\omega n}d\omega }
∑
n
=
−
∞
∞
x
[
n
]
e
−
j
ω
n
{\displaystyle \sum _{n=-\infty }^{\infty }{x[n]e^{-j\omega n}}}
Definition
x
[
n
]
=
{
1
,
|
n
|
≤
M
0
,
otherwise
{\displaystyle x[n]={\begin{cases}1,&|n|\leq M\\0,&{\text{otherwise}}\end{cases}}}
sin
(
ω
(
2
M
+
1
2
)
)
sin
(
ω
2
)
{\displaystyle {\frac {\sin \left(\omega \left({\frac {2M+1}{2}}\right)\right)}{\sin \left({\frac {\omega }{2}}\right)}}}
α
n
u
[
n
]
{\displaystyle \alpha ^{n}u\left[n\right]}
1
1
−
α
e
−
j
ω
{\displaystyle {\frac {1}{1-\alpha e^{-j\omega }}}}
δ
[
n
]
{\displaystyle \delta [n]}
1
{\displaystyle 1\!}
Here
δ
[
n
]
{\displaystyle \delta [n]}
represents the delta function
which is 1 if
n
=
0
{\displaystyle n=0}
and zero otherwise.
u
[
n
]
=
{
0
for
n
<
0
1
for
n
≥
0
{\displaystyle u[n]={\begin{cases}0&{\text{for }}n<0\\1&{\text{for }}n\geq 0\end{cases}}}
1
1
−
e
−
j
ω
+
π
∑
p
=
−
∞
∞
δ
(
ω
−
2
π
p
)
{\displaystyle {\frac {1}{1-e^{-j\omega }}}+\pi \sum _{p=-\infty }^{\infty }{\delta \left(\omega -2\pi p\right)}}
1
π
n
sin
(
W
n
)
,
0
<
W
≤
π
{\displaystyle {\frac {1}{\pi n}}\sin \left(Wn\right),\;\;\;\;0<W\leq \pi }
X
(
e
j
ω
)
=
{
1
,
|
ω
|
≤
W
0
,
W
<
|
ω
|
≤
π
{\displaystyle X(e^{j\omega })={\begin{cases}1,&|\omega |\leq W\\0,&W<|\omega |\leq \pi \end{cases}}}
X
(
e
j
ω
)
{\displaystyle X(e^{j\omega })}
is 2π periodic
(
n
+
1
)
α
n
u
[
n
]
{\displaystyle (n+1)\alpha ^{n}u\left[n\right]}
1
(
1
−
α
e
−
j
ω
)
2
{\displaystyle {\frac {1}{(1-\alpha e^{-j\omega })^{2}}}}