Matrices that follow certain predefined formats are useful in a number of computations. We will discuss some of the common matrix formats here. Later chapters will show how these formats are used in calculations and analysis.
A diagonal matrix is a matrix such that:
a
i
j
=
0
,
i
≠
j
{\displaystyle a_{ij}=0,i\neq j}
In otherwords, all the elements off the main diagonal are zero, and the diagonal elements may be (but don't need to be) non-zero.
If we have the following characteristic polynomial for a matrix:
|
A
−
λ
I
|
=
λ
n
+
a
n
−
1
λ
n
−
1
+
⋯
+
a
1
λ
1
+
a
0
{\displaystyle |A-\lambda I|=\lambda ^{n}+a_{n-1}\lambda ^{n-1}+\cdots +a_{1}\lambda ^{1}+a_{0}}
We can create a companion form matrix in one of two ways:
[
0
0
0
⋯
0
−
a
0
1
0
0
⋯
0
−
a
1
0
1
0
⋯
0
−
a
2
0
0
1
⋯
0
−
a
3
⋮
⋮
⋮
⋱
⋮
⋮
0
0
0
⋯
1
−
a
n
−
1
]
{\displaystyle {\begin{bmatrix}0&0&0&\cdots &0&-a_{0}\\1&0&0&\cdots &0&-a_{1}\\0&1&0&\cdots &0&-a_{2}\\0&0&1&\cdots &0&-a_{3}\\\vdots &\vdots &\vdots &\ddots &\vdots &\vdots \\0&0&0&\cdots &1&-a_{n-1}\end{bmatrix}}}
Or, we can also write it as:
[
−
a
n
−
1
−
a
n
−
2
−
a
n
−
3
⋯
a
1
a
0
0
0
0
⋯
0
0
1
0
0
⋯
0
0
0
1
0
⋯
0
0
0
0
1
⋯
0
0
⋮
⋮
⋮
⋱
⋮
⋮
0
0
0
⋯
1
0
]
{\displaystyle {\begin{bmatrix}-a_{n-1}&-a_{n-2}&-a_{n-3}&\cdots &a_{1}&a_{0}\\0&0&0&\cdots &0&0\\1&0&0&\cdots &0&0\\0&1&0&\cdots &0&0\\0&0&1&\cdots &0&0\\\vdots &\vdots &\vdots &\ddots &\vdots &\vdots \\0&0&0&\cdots &1&0\end{bmatrix}}}
To discuss the Jordan canonical form, we first need to introduce the idea of the Jordan Block :
A jordan block is a square matrix such that all the diagonal elements are equal, and all the super-diagonal elements (the elements directly above the diagonal elements) are all 1. To illustrate this, here is an example of an n-dimensional jordan block:
[
a
1
0
⋯
0
0
a
1
⋯
0
0
0
a
⋯
0
⋮
⋮
⋮
⋱
⋮
0
0
a
⋯
1
0
0
0
⋯
a
]
{\displaystyle {\begin{bmatrix}a&1&0&\cdots &0\\0&a&1&\cdots &0\\0&0&a&\cdots &0\\\vdots &\vdots &\vdots &\ddots &\vdots \\0&0&a&\cdots &1\\0&0&0&\cdots &a\end{bmatrix}}}
A square matrix is in Jordan Canonical form , if it is a diagonal matrix, or if it has one of the following two block-diagonal forms:
[
D
0
⋯
0
0
J
1
⋯
0
⋮
⋮
⋱
⋮
0
0
⋯
J
n
]
{\displaystyle {\begin{bmatrix}D&0&\cdots &0\\0&J_{1}&\cdots &0\\\vdots &\vdots &\ddots &\vdots \\0&0&\cdots &J_{n}\end{bmatrix}}}
Or:
[
J
1
0
⋯
0
0
J
2
⋯
0
⋮
⋮
⋱
⋮
0
0
⋯
J
n
]
{\displaystyle {\begin{bmatrix}J_{1}&0&\cdots &0\\0&J_{2}&\cdots &0\\\vdots &\vdots &\ddots &\vdots \\0&0&\cdots &J_{n}\end{bmatrix}}}
The where the D element is a diagonal block matrix, and the J blocks are in Jordan block form.