Home
Random
Log in
Settings
Donations
About Wikibooks
Disclaimers
Search
Electronics Communication/Signal Processing/Signal Transformation/Z Transform
Language
Watch
Edit
<
Electronics Communication
|
Signal Processing
|
Signal Transformation
Z Transform Properties
edit
Time domain
Z-domain
ROC
Notation
x
[
n
]
=
Z
−
1
{
X
(
z
)
}
{\displaystyle x[n]={\mathcal {Z}}^{-1}\{X(z)\}}
X
(
z
)
=
Z
{
x
[
n
]
}
{\displaystyle X(z)={\mathcal {Z}}\{x[n]\}}
ROC:
r
2
<
|
z
|
<
r
1
{\displaystyle r_{2}<|z|<r_{1}\ }
Linearity
a
1
x
1
[
n
]
+
a
2
x
2
[
n
]
{\displaystyle a_{1}x_{1}[n]+a_{2}x_{2}[n]\ }
a
1
X
1
(
z
)
+
a
2
X
2
(
z
)
{\displaystyle a_{1}X_{1}(z)+a_{2}X_{2}(z)\ }
At least the intersection of ROC
1
and ROC
2
Time shifting
x
[
n
−
k
]
{\displaystyle x[n-k]\ }
z
−
k
X
(
z
)
{\displaystyle z^{-k}X(z)\ }
ROC, except
z
=
0
{\displaystyle z=0\ }
if
k
>
0
{\displaystyle k>0\,}
and
z
=
∞
{\displaystyle z=\infty }
if
k
<
0
{\displaystyle k<0\ }
Scaling in the z-domain
a
n
x
[
n
]
{\displaystyle a^{n}x[n]\ }
X
(
a
−
1
z
)
{\displaystyle X(a^{-1}z)\ }
|
a
|
r
2
<
|
z
|
<
|
a
|
r
1
{\displaystyle |a|r_{2}<|z|<|a|r_{1}\ }
Time reversal
x
[
−
n
]
{\displaystyle x[-n]\ }
X
(
z
−
1
)
{\displaystyle X(z^{-1})\ }
1
r
2
<
|
z
|
<
1
r
1
{\displaystyle {\frac {1}{r_{2}}}<|z|<{\frac {1}{r_{1}}}\ }
Conjugation
x
∗
[
n
]
{\displaystyle x^{*}[n]\ }
X
∗
(
z
∗
)
{\displaystyle X^{*}(z^{*})\ }
ROC
Real part
Re
{
x
[
n
]
}
{\displaystyle \operatorname {Re} \{x[n]\}\ }
1
2
[
X
(
z
)
+
X
∗
(
z
∗
)
]
{\displaystyle {\frac {1}{2}}\left[X(z)+X^{*}(z^{*})\right]}
ROC
Imaginary part
Im
{
x
[
n
]
}
{\displaystyle \operatorname {Im} \{x[n]\}\ }
1
2
j
[
X
(
z
)
−
X
∗
(
z
∗
)
]
{\displaystyle {\frac {1}{2j}}\left[X(z)-X^{*}(z^{*})\right]}
ROC
Differentiation
n
x
[
n
]
{\displaystyle nx[n]\ }
−
z
d
X
(
z
)
d
z
{\displaystyle -z{\frac {\mathrm {d} X(z)}{\mathrm {d} z}}}
ROC
Convolution
x
1
[
n
]
∗
x
2
[
n
]
{\displaystyle x_{1}[n]*x_{2}[n]\ }
X
1
(
z
)
X
2
(
z
)
{\displaystyle X_{1}(z)X_{2}(z)\ }
At least the intersection of ROC
1
and ROC
2
Correlation
r
x
1
,
x
2
(
l
)
=
x
1
[
l
]
∗
x
2
[
−
l
]
{\displaystyle r_{x_{1},x_{2}}(l)=x_{1}[l]*x_{2}[-l]\ }
R
x
1
,
x
2
(
z
)
=
X
1
(
z
)
X
2
(
z
−
1
)
{\displaystyle R_{x_{1},x_{2}}(z)=X_{1}(z)X_{2}(z^{-1})\ }
At least the intersection of ROC of X
1
(z) and X
2
(
z
−
1
{\displaystyle z^{-1}}
)
Multiplication
x
1
[
n
]
x
2
[
n
]
{\displaystyle x_{1}[n]x_{2}[n]\ }
1
j
2
π
∮
C
X
1
(
v
)
X
2
(
z
v
)
v
−
1
d
v
{\displaystyle {\frac {1}{j2\pi }}\oint _{C}X_{1}(v)X_{2}({\frac {z}{v}})v^{-1}\mathrm {d} v\ }
At least
r
1
l
r
2
l
<
|
z
|
<
r
1
u
r
2
u
{\displaystyle r_{1l}r_{2l}<|z|<r_{1u}r_{2u}\ }
Parseval's relation
∑
∞
x
1
[
n
]
x
2
∗
[
n
]
{\displaystyle \sum ^{\infty }x_{1}[n]x_{2}^{*}[n]\ }
1
j
2
π
∮
C
X
1
(
v
)
X
2
∗
(
1
v
∗
)
v
−
1
d
v
{\displaystyle {\frac {1}{j2\pi }}\oint _{C}X_{1}(v)X_{2}^{*}({\frac {1}{v^{*}}})v^{-1}\mathrm {d} v\ }
Initial value theorem
x
[
0
]
=
lim
z
→
∞
X
(
z
)
{\displaystyle x[0]=\lim _{z\rightarrow \infty }X(z)\ }
, If
x
[
n
]
{\displaystyle x[n]\,}
causal
Final value theorem
x
[
∞
]
=
lim
z
→
1
(
z
−
1
)
X
(
z
)
{\displaystyle x[\infty ]=\lim _{z\rightarrow 1}(z-1)X(z)\ }
, Only if poles of
(
z
−
1
)
X
(
z
)
{\displaystyle (z-1)X(z)\ }
are inside unit circle
Z Transform Table
edit
Here:
u
[
n
]
=
1
{\displaystyle u[n]=1}
for
n
>=
0
{\displaystyle n>=0}
,
u
[
n
]
=
0
{\displaystyle u[n]=0}
for
n
<
0
{\displaystyle n<0}
δ
[
n
]
=
1
{\displaystyle \delta [n]=1}
for
n
=
0
{\displaystyle n=0}
,
δ
[
n
]
=
0
{\displaystyle \delta [n]=0}
otherwise
Signal,
x
[
n
]
{\displaystyle x[n]}
Z-transform,
X
(
z
)
{\displaystyle X(z)}
ROC
1
δ
[
n
]
{\displaystyle \delta [n]\,}
1
{\displaystyle 1\,}
all
z
{\displaystyle {\mbox{all }}z\,}
2
δ
[
n
−
n
0
]
{\displaystyle \delta [n-n_{0}]\,}
z
−
n
0
{\displaystyle z^{-n_{0}}\,}
z
≠
0
{\displaystyle z\neq 0\,}
3
u
[
n
]
{\displaystyle u[n]\,}
1
1
−
z
−
1
{\displaystyle {\frac {1}{1-z^{-1}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
4
−
u
[
−
n
−
1
]
{\displaystyle -u[-n-1]\,}
1
1
−
z
−
1
{\displaystyle {\frac {1}{1-z^{-1}}}}
|
z
|
<
1
{\displaystyle |z|<1\,}
5
n
u
[
n
]
{\displaystyle nu[n]\,}
z
−
1
(
1
−
z
−
1
)
2
{\displaystyle {\frac {z^{-1}}{(1-z^{-1})^{2}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
6
−
n
u
[
−
n
−
1
]
{\displaystyle -nu[-n-1]\,}
z
−
1
(
1
−
z
−
1
)
2
{\displaystyle {\frac {z^{-1}}{(1-z^{-1})^{2}}}}
|
z
|
<
1
{\displaystyle |z|<1\,}
7
n
2
u
[
n
]
{\displaystyle n^{2}u[n]\,}
z
−
1
(
1
+
z
−
1
)
(
1
−
z
−
1
)
3
{\displaystyle {\frac {z^{-1}(1+z^{-1})}{(1-z^{-1})^{3}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
8
−
n
2
u
[
−
n
−
1
]
{\displaystyle -n^{2}u[-n-1]\,}
z
−
1
(
1
+
z
−
1
)
(
1
−
z
−
1
)
3
{\displaystyle {\frac {z^{-1}(1+z^{-1})}{(1-z^{-1})^{3}}}}
|
z
|
<
1
{\displaystyle |z|<1\,}
9
n
3
u
[
n
]
{\displaystyle n^{3}u[n]\,}
z
−
1
(
1
+
4
z
−
1
+
z
−
2
)
(
1
−
z
−
1
)
4
{\displaystyle {\frac {z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^{4}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
10
−
n
3
u
[
−
n
−
1
]
{\displaystyle -n^{3}u[-n-1]\,}
z
−
1
(
1
+
4
z
−
1
+
z
−
2
)
(
1
−
z
−
1
)
4
{\displaystyle {\frac {z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^{4}}}}
|
z
|
<
1
{\displaystyle |z|<1\,}
11
a
n
u
[
n
]
{\displaystyle a^{n}u[n]\,}
1
1
−
a
z
−
1
{\displaystyle {\frac {1}{1-az^{-1}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
12
−
a
n
u
[
−
n
−
1
]
{\displaystyle -a^{n}u[-n-1]\,}
1
1
−
a
z
−
1
{\displaystyle {\frac {1}{1-az^{-1}}}}
|
z
|
<
|
a
|
{\displaystyle |z|<|a|\,}
13
n
a
n
u
[
n
]
{\displaystyle na^{n}u[n]\,}
a
z
−
1
(
1
−
a
z
−
1
)
2
{\displaystyle {\frac {az^{-1}}{(1-az^{-1})^{2}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
14
−
n
a
n
u
[
−
n
−
1
]
{\displaystyle -na^{n}u[-n-1]\,}
a
z
−
1
(
1
−
a
z
−
1
)
2
{\displaystyle {\frac {az^{-1}}{(1-az^{-1})^{2}}}}
|
z
|
<
|
a
|
{\displaystyle |z|<|a|\,}
15
n
2
a
n
u
[
n
]
{\displaystyle n^{2}a^{n}u[n]\,}
a
z
−
1
(
1
+
a
z
−
1
)
(
1
−
a
z
−
1
)
3
{\displaystyle {\frac {az^{-1}(1+az^{-1})}{(1-az^{-1})^{3}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
16
−
n
2
a
n
u
[
−
n
−
1
]
{\displaystyle -n^{2}a^{n}u[-n-1]\,}
a
z
−
1
(
1
+
a
z
−
1
)
(
1
−
a
z
−
1
)
3
{\displaystyle {\frac {az^{-1}(1+az^{-1})}{(1-az^{-1})^{3}}}}
|
z
|
<
|
a
|
{\displaystyle |z|<|a|\,}
17
cos
(
ω
0
n
)
u
[
n
]
{\displaystyle \cos(\omega _{0}n)u[n]\,}
1
−
z
−
1
cos
(
ω
0
)
1
−
2
z
−
1
cos
(
ω
0
)
+
z
−
2
{\displaystyle {\frac {1-z^{-1}\cos(\omega _{0})}{1-2z^{-1}\cos(\omega _{0})+z^{-2}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
18
sin
(
ω
0
n
)
u
[
n
]
{\displaystyle \sin(\omega _{0}n)u[n]\,}
z
−
1
sin
(
ω
0
)
1
−
2
z
−
1
cos
(
ω
0
)
+
z
−
2
{\displaystyle {\frac {z^{-1}\sin(\omega _{0})}{1-2z^{-1}\cos(\omega _{0})+z^{-2}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
19
a
n
cos
(
ω
0
n
)
u
[
n
]
{\displaystyle a^{n}\cos(\omega _{0}n)u[n]\,}
1
−
a
z
−
1
cos
(
ω
0
)
1
−
2
a
z
−
1
cos
(
ω
0
)
+
a
2
z
−
2
{\displaystyle {\frac {1-az^{-1}\cos(\omega _{0})}{1-2az^{-1}\cos(\omega _{0})+a^{2}z^{-2}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
20
a
n
sin
(
ω
0
n
)
u
[
n
]
{\displaystyle a^{n}\sin(\omega _{0}n)u[n]\,}
a
z
−
1
sin
(
ω
0
)
1
−
2
a
z
−
1
cos
(
ω
0
)
+
a
2
z
−
2
{\displaystyle {\frac {az^{-1}\sin(\omega _{0})}{1-2az^{-1}\cos(\omega _{0})+a^{2}z^{-2}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}