Figure 1: RCL circuit
When the switch is closed, a voltage step is applied to the RCL circuit. Take the time the switch was closed to be 0s such that the voltage before the switch was closed was 0 volts and the voltage after the switch was closed is a voltage V. This is a step function given by
V
⋅
u
(
t
)
{\displaystyle V\cdot u(t)}
where V is the magnitude of the step and
u
(
t
)
=
1
{\displaystyle u(t)=1}
for
t
≥
0
{\displaystyle t\geq 0}
and zero
otherwise.
To analyse the circuit response using transient analysis, a differential equation which describes the system is formulated. The voltage around the loop is given by:
V
u
(
t
)
=
v
c
(
t
)
+
d
i
(
t
)
d
t
L
+
R
i
(
t
)
(1)
{\displaystyle Vu(t)=v_{c}(t)+{\frac {di(t)}{dt}}L+Ri(t){\mbox{ (1)}}}
where
v
c
(
t
)
{\displaystyle v_{c}(t)}
is the voltage across the capacitor,
d
i
(
t
)
d
t
L
{\displaystyle {\frac {di(t)}{dt}}L}
is the voltage across the inductor and
R
i
(
t
)
{\displaystyle Ri(t)}
the voltage across the resistor.
Substituting
i
(
t
)
=
d
v
c
(
t
)
d
t
{\displaystyle i(t)={\frac {dv_{c}(t)}{dt}}}
into equation 1:
V
u
(
t
)
=
v
c
(
t
)
+
d
2
v
c
(
t
)
d
t
2
L
C
+
R
d
v
c
(
t
)
d
t
C
{\displaystyle Vu(t)=v_{c}(t)+{\frac {d^{2}v_{c}(t)}{dt^{2}}}LC+R{\frac {dv_{c}(t)}{dt}}C}
d
2
v
c
(
t
)
d
t
2
+
R
L
d
v
c
(
t
)
d
t
+
1
L
C
v
c
(
t
)
=
V
u
(
t
)
L
C
(2)
{\displaystyle {\frac {d^{2}v_{c}(t)}{dt^{2}}}+{\frac {R}{L}}{\frac {dv_{c}(t)}{dt}}+{\frac {1}{LC}}v_{c}(t)={\frac {Vu(t)}{LC}}{\mbox{ (2)}}}
The voltage
v
c
(
t
)
{\displaystyle v_{c}(t)}
has two components, a natural response
v
n
(
t
)
{\displaystyle v_{n}(t)}
and a forced response
v
f
(
t
)
{\displaystyle v_{f}(t)}
such that:
v
c
(
t
)
=
v
f
(
t
)
+
v
n
(
t
)
(3)
{\displaystyle v_{c}(t)=v_{f}(t)+v_{n}(t){\mbox{ (3)}}}
substituting equation 3 into equation 2.
[
d
2
v
n
(
t
)
d
t
2
+
R
L
d
v
n
(
t
)
d
t
+
1
L
C
v
n
(
t
)
]
+
[
d
2
v
f
(
t
)
d
t
2
+
R
L
d
v
f
(
t
)
d
t
+
1
L
C
v
f
(
t
)
]
=
0
+
V
u
(
t
)
L
C
{\displaystyle {\bigg [}{\frac {d^{2}v_{n}(t)}{dt^{2}}}+{\frac {R}{L}}{\frac {dv_{n}(t)}{dt}}+{\frac {1}{LC}}v_{n}(t){\bigg ]}+{\bigg [}{\frac {d^{2}v_{f}(t)}{dt^{2}}}+{\frac {R}{L}}{\frac {dv_{f}(t)}{dt}}+{\frac {1}{LC}}v_{f}(t){\bigg ]}=0+{\frac {Vu(t)}{LC}}}
when
t
>
0
s
{\displaystyle t>0s}
then
u
(
t
)
=
1
{\displaystyle u(t)=1}
:
[
d
2
v
n
(
t
)
d
t
2
+
R
L
d
v
n
(
t
)
d
t
+
1
L
C
v
n
(
t
)
]
=
0
(4)
{\displaystyle {\bigg [}{\frac {d^{2}v_{n}(t)}{dt^{2}}}+{\frac {R}{L}}{\frac {dv_{n}(t)}{dt}}+{\frac {1}{LC}}v_{n}(t){\bigg ]}=0{\mbox{ (4)}}}
[
d
2
v
f
(
t
)
d
t
2
+
R
L
d
v
f
(
t
)
d
t
+
1
L
C
v
f
(
t
)
]
=
V
L
C
(5)
{\displaystyle {\bigg [}{\frac {d^{2}v_{f}(t)}{dt^{2}}}+{\frac {R}{L}}{\frac {dv_{f}(t)}{dt}}+{\frac {1}{LC}}v_{f}(t){\bigg ]}={\frac {V}{LC}}{\mbox{ (5)}}}
The natural response and forced solution are solved separately.
Solve for
v
f
(
t
)
:
{\displaystyle v_{f}(t):}
Since
V
L
C
{\displaystyle {\frac {V}{LC}}}
is a polynomial of degree 0, the solution
v
f
(
t
)
{\displaystyle v_{f}(t)}
must be a constant such that:
v
f
(
t
)
=
K
{\displaystyle v_{f}(t)=K}
d
v
f
(
t
)
d
t
=
0
{\displaystyle {\frac {dv_{f}(t)}{dt}}=0}
d
2
v
f
(
t
)
d
t
=
0
{\displaystyle {\frac {d^{2}v_{f}(t)}{dt}}=0}
Substituting into equation 5:
1
L
C
K
=
V
L
C
{\displaystyle {\frac {1}{LC}}K={\frac {V}{LC}}}
K
=
V
{\displaystyle K=V}
v
f
=
V
(6)
{\displaystyle v_{f}=V{\mbox{ (6)}}}
Solve for
v
n
(
t
)
{\displaystyle v_{n}(t)}
:
Let:
R
L
=
2
α
{\displaystyle {\frac {R}{L}}=2\alpha }
1
L
C
=
ω
n
2
{\displaystyle {\frac {1}{LC}}=\omega _{n}^{2}}
v
n
(
t
)
=
A
e
s
t
{\displaystyle v_{n}(t)=Ae^{st}}
Substituting into equation 4 gives:
d
2
A
e
s
t
d
t
2
+
2
α
d
A
e
s
t
d
t
+
ω
n
2
A
e
s
t
=
0
{\displaystyle {\frac {d^{2}Ae^{st}}{dt^{2}}}+2\alpha {\frac {dAe^{st}}{dt}}+\omega _{n}^{2}Ae^{st}=0}
s
2
A
e
s
t
+
2
α
A
e
s
t
+
ω
2
2
A
e
s
t
=
0
{\displaystyle s^{2}Ae^{st}+2\alpha Ae^{st}+\omega _{2}^{2}Ae^{st}=0}
s
2
+
2
α
s
+
ω
n
2
=
0
{\displaystyle s^{2}+2\alpha s+\omega _{n}^{2}=0}
s
=
−
2
α
±
4
α
2
−
4
ω
n
2
2
=
−
α
±
α
2
−
ω
n
2
{\displaystyle s={\frac {-2\alpha \pm {\sqrt {4\alpha ^{2}-4\omega _{n}^{2}}}}{2}}=-\alpha \pm {\sqrt {\alpha ^{2}-\omega _{n}^{2}}}}
Therefore
v
n
(
t
)
{\displaystyle v_{n}(t)}
has two solutions
A
e
s
1
t
{\displaystyle Ae^{s_{1}t}}
and
A
e
s
2
t
{\displaystyle Ae^{s_{2}t}}
where
s
1
{\displaystyle s_{1}}
and
s
2
{\displaystyle s_{2}}
are given by:
s
1
=
−
α
+
α
2
−
ω
n
2
{\displaystyle s_{1}=-\alpha +{\sqrt {\alpha ^{2}-\omega _{n}^{2}}}}
s
2
=
−
α
−
α
2
−
ω
n
2
{\displaystyle s_{2}=-\alpha -{\sqrt {\alpha ^{2}-\omega _{n}^{2}}}}
The general solution is then given by:
v
n
(
t
)
=
A
1
e
s
1
t
+
A
2
e
s
2
t
{\displaystyle v_{n}(t)=A_{1}e^{s_{1}t}+A_{2}e^{s_{2}t}}
Depending on the values of the Resistor, inductor or capacitor the solution has three posibilies.
1. If
α
>
ω
n
{\displaystyle \alpha >\omega _{n}}
the system is said to be overdamped
2. If
α
=
ω
n
{\displaystyle \alpha =\omega _{n}}
the system is said to be critically damped
3. If
α
<
ω
n
{\displaystyle \alpha <\omega _{n}}
the system is said to be underdamped
Given the general solution
R
L
C
V
0.5H
1kΩ
100nF
1V
α
=
R
2
L
=
1000
{\displaystyle \alpha ={\frac {R}{2L}}=1000}
ω
n
=
1
L
C
≈
4472
{\displaystyle \omega _{n}={\frac {1}{\sqrt {LC}}}\approx 4472}
s
1
=
−
1000
−
4359
j
{\displaystyle s_{1}=-1000-4359j}
s
2
=
−
1000
+
4359
j
{\displaystyle s_{2}=-1000+4359j}
v
n
(
t
)
=
A
1
e
(
−
1000
−
4359
j
)
t
+
A
2
e
(
−
1000
+
4359
j
)
t
{\displaystyle v_{n}(t)=A_{1}e^{(-1000-4359j)t}+A_{2}e^{(-1000+4359j)t}}
Thus by Euler's formula (
e
j
ϕ
=
cos
ϕ
+
j
sin
ϕ
{\displaystyle e^{j\phi }=\cos {\phi }+j\sin {\phi }}
):
v
n
(
t
)
=
e
−
1000
[
A
1
(
cos
(
−
4359
t
)
+
j
sin
(
−
4359
t
)
)
+
A
2
(
cos
(
4359
t
)
+
j
sin
(
4359
t
)
)
]
{\displaystyle v_{n}(t)=e^{-1000}{\big [}A_{1}{\big (}\cos(-4359t)+j\sin(-4359t){\big )}+A_{2}{\big (}\cos(4359t)+j\sin(4359t){\big )}{\big ]}}
v
n
(
t
)
=
e
−
1000
t
[
(
A
1
+
A
2
)
cos
(
4359
t
)
+
j
(
−
A
1
+
A
2
)
sin
(
4359
t
)
]
{\displaystyle v_{n}(t)=e^{-1000t}{\big [}(A_{1}+A_{2})\cos(4359t)+j(-A_{1}+A_{2})\sin(4359t){\big ]}}
Let
B
1
=
A
1
+
A
2
{\displaystyle B_{1}=A_{1}+A_{2}}
and
B
2
=
j
(
−
A
1
+
A
2
)
{\displaystyle B_{2}=j(-A_{1}+A_{2})}
v
n
(
t
)
=
e
−
1000
t
[
B
1
cos
(
4359
t
)
+
B
2
sin
(
4359
t
)
]
{\displaystyle v_{n}(t)=e^{-1000t}{\big [}B_{1}\cos(4359t)+B_{2}\sin(4359t){\big ]}}
Solve for
B
1
{\displaystyle B_{1}}
and
B
2
{\displaystyle B_{2}}
:
From equation \ref{eq:vf},
v
f
=
1
{\displaystyle v_{f}=1}
for a unit step of magnitude
1V. Therefore substitution of
v
f
{\displaystyle v_{f}}
and
v
n
(
t
)
{\displaystyle v_{n}(t)}
into equation \ref{eq:nonhomogeneous} gives:
v
c
(
t
)
=
1
+
e
−
1000
t
[
B
1
cos
(
4359
t
)
+
B
2
sin
(
4359
t
)
]
{\displaystyle v_{c}(t)=1+e^{-1000t}{\big [}B_{1}\cos(4359t)+B_{2}\sin(4359t){\big ]}}
for
t
=
0
{\displaystyle t=0}
the voltage across the capacitor is zero,
v
c
(
t
)
=
0
{\displaystyle v_{c}(t)=0}
0
=
1
+
B
1
cos
(
0
)
+
B
2
sin
(
0
)
{\displaystyle 0=1+B_{1}\cos(0)+B_{2}\sin(0)}
B
1
=
−
1
(7)
{\displaystyle B_{1}=-1{\mbox{ (7)}}}
for
t
=
0
{\displaystyle t=0}
, the current in the inductor must be zero,
i
(
0
)
=
0
{\displaystyle i(0)=0}
i
(
t
)
=
d
v
c
(
t
)
d
t
C
{\displaystyle i(t)={\frac {dv_{c}(t)}{dt}}C}
i
(
0
)
=
100
⋅
10
−
9
[
e
−
1000
t
(
−
4359
B
1
sin
(
4359
t
)
+
4359
B
2
cos
(
4359
t
)
)
−
1000
e
−
1000
t
(
B
1
cos
(
4359
t
)
+
B
2
sin
(
4359
t
)
)
]
{\displaystyle i(0)=100\cdot 10^{-9}{\big [}e^{-1000t}{\big (}-4359B_{1}\sin(4359t)+4359B_{2}\cos(4359t){\big )}-1000e^{-1000t}{\big (}B_{1}\cos(4359t)+B_{2}\sin(4359t){\big )}{\big ]}}
0
=
100
⋅
10
−
9
[
4359
B
2
−
1000
B
1
]
{\displaystyle 0=100\cdot 10^{-9}{\big [}4359B_{2}-1000B_{1}{\big ]}}
substituting
B
1
{\displaystyle B_{1}}
from equation \ref{eq:B1} gives
B
2
≈
−
0.229
{\displaystyle B_{2}\approx -0.229}
For
t
>
0
{\displaystyle t>0}
,
v
c
(
t
)
{\displaystyle v_{c}(t)}
is given by:
v
c
(
t
)
=
1
−
e
−
1000
t
[
cos
(
4359
t
)
+
0.229
sin
(
4359
t
)
]
{\displaystyle v_{c}(t)=1-e^{-1000t}{\big [}\cos(4359t)+0.229\sin(4359t){\big ]}}
v
o
u
t
{\displaystyle v_{out}}
is given by:
v
o
u
t
=
V
i
n
−
v
c
(
t
)
{\displaystyle v_{out}=V_{in}-v_{c}(t)}
v
o
u
t
=
V
u
(
t
)
−
v
c
(
t
)
{\displaystyle v_{out}=Vu(t)-v_{c}(t)}
For
t
>
0
{\displaystyle t>0}
,
v
o
u
t
{\displaystyle v_{out}}
is given by:
v
o
u
t
=
e
−
1000
t
[
cos
(
4359
t
)
+
0.229
sin
(
4359
t
)
]
{\displaystyle v_{out}=e^{-1000t}{\big [}\cos(4359t)+0.229\sin(4359t){\big ]}}