Home
Random
Log in
Settings
Donations
About Wikibooks
Disclaimers
Search
Electronics/Electronics Formulas/Series Circuits/Series RLC
Language
Watch
Edit
<
Electronics
|
Electronics Formulas
|
Series Circuits
Contents
1
Circuit Configuration
2
Formula
2.1
Circuit's Impedance
2.2
Differential Equation
2.2.1
The Natural Response of the circuit
2.2.2
The Resonance Response of the circuit
3
Summary
Circuit Configuration
edit
Formula
edit
Circuit's Impedance
edit
The total Impedance of the circuit
Z
=
Z
R
+
Z
L
{\displaystyle Z=Z_{R}+Z_{L}}
Z
=
R
+
j
ω
L
{\displaystyle Z=R+j\omega L}
Z
=
1
R
(
1
+
j
ω
T
)
{\displaystyle Z={\frac {1}{R}}(1+j\omega T)}
T
=
L
R
{\displaystyle T={\frac {L}{R}}}
Differential Equation
edit
The Differential equation of the circuit at equilibrium
L
d
i
d
t
+
1
C
∫
i
d
t
+
i
R
=
0
{\displaystyle L{\frac {di}{dt}}+{\frac {1}{C}}\int idt+iR=0}
d
2
i
d
t
2
+
R
L
d
i
d
t
+
1
L
C
=
0
{\displaystyle {\frac {d^{2}i}{dt^{2}}}+{\frac {R}{L}}{\frac {di}{dt}}+{\frac {1}{LC}}=0}
s
2
+
R
L
s
+
1
L
C
=
0
{\displaystyle s^{2}+{\frac {R}{L}}s+{\frac {1}{LC}}=0}
s
=
(
−
α
±
λ
)
t
{\displaystyle s=(-\alpha \pm \lambda )t}
λ
=
α
2
−
β
2
{\displaystyle \lambda ={\sqrt {\alpha ^{2}-\beta ^{2}}}}
α
=
R
2
L
{\displaystyle \alpha ={\frac {R}{2L}}}
β
=
1
L
C
{\displaystyle \beta ={\frac {1}{LC}}}
The Natural Response of the circuit
edit
λ
=
0
{\displaystyle \lambda =0}
.
α
2
=
β
2
{\displaystyle \alpha ^{2}=\beta ^{2}}
i
=
e
(
−
α
t
)
{\displaystyle i=e^{(}-\alpha t)}
λ
=
0
{\displaystyle \lambda =0}
.
α
2
=
β
2
{\displaystyle \alpha ^{2}=\beta ^{2}}
i
=
e
(
−
α
t
)
[
e
(
λ
t
)
+
e
(
−
λ
t
)
]
{\displaystyle i=e^{(}-\alpha t)[e^{(}\lambda t)+e^{(}-\lambda t)]}
λ
=
0
{\displaystyle \lambda =0}
.
α
2
=
β
2
{\displaystyle \alpha ^{2}=\beta ^{2}}
i
=
e
(
−
α
t
)
[
e
(
j
λ
t
)
+
e
(
−
j
λ
t
)
]
{\displaystyle i=e^{(}-\alpha t)[e^{(}j\lambda t)+e^{(}-j\lambda t)]}
The Resonance Response of the circuit
edit
Z
L
−
Z
C
=
0
{\displaystyle Z_{L}-Z_{C}=0}
.
Z
L
=
Z
C
{\displaystyle Z_{L}=Z_{C}}
.
ω
L
=
1
ω
C
{\displaystyle \omega L={\frac {1}{\omega C}}}
.
ω
=
1
L
C
{\displaystyle \omega ={\sqrt {\frac {1}{LC}}}}
V
L
+
V
C
=
0
{\displaystyle V_{L}+V_{C}=0}
.
{\displaystyle }
ω
=
0
{\displaystyle \omega =0}
.
ω
=
0
{\displaystyle \omega =0}
Summary
edit