Data Mining Algorithms In R/Print version


Data Mining Algorithms In R

The current, editable version of this book is available in Wikibooks, the open-content textbooks collection, at
https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R

Permission is granted to copy, distribute, and/or modify this document under the terms of the Creative Commons Attribution-ShareAlike 3.0 License.

Dimensionality Reduction

  1. Principal Component Analysis
  2. Singular Value Decomposition
  3. Feature Selection


Frequent Pattern Mining

Contents

edit
  1. The Eclat Algorithm
  2. arulesNBMiner
  3. The Apriori Algorithm
  4. The FP-Growth Algorithm


Sequence Mining

  1. SPADE
  2. DEGSeq


Clustering

  1. K-Means
  2. Hybrid Hierarchical Clustering
  3. Expectation Maximization (EM)
  4. Dissimilarity Matrix Calculation
  5. Hierarchical Clustering
  6. Bayesian Hierarchical Clustering
  7. Density-Based Clustering
  8. K-Cores
  9. Fuzzy Clustering - Fuzzy C-means
  10. RockCluster
  11. Biclust
  12. Partitioning Around Medoids (PAM)
  13. CLUES
  14. Self-Organizing Maps (SOM)
  15. Proximus
  16. CLARA


Classification

  1. SVM
  2. penalizedSVM
  3. kNN
  4. Outliers
  5. Decision Trees
  6. Naïve Bayes
  7. adaboost
  8. JRip


R Packages

In this section, we will discuss about R packages that are related to datamining.

Contents

edit
  1. RWeka
  2. gausspred
  3. optimsimplex
  4. CCMtools
  5. FactoMineR
  6. nnet