Home
Random
Log in
Settings
Donations
About Wikibooks
Disclaimers
Search
Circuit Theory/Phasors/proof6
Language
Watch
Edit
<
Circuit Theory
|
Phasors
g
(
t
)
=
G
m
s
i
n
(
ω
t
+
ϕ
)
{\displaystyle g(t)=G_{m}sin(\omega t+\phi )}
g
(
t
)
=
G
m
c
o
s
(
ω
t
+
ϕ
−
π
2
)
{\displaystyle g(t)=G_{m}cos(\omega t+\phi -{\frac {\pi }{2}})}
g
(
t
)
=
G
m
Re
(
e
j
(
ω
t
+
ϕ
−
π
2
)
)
{\displaystyle g(t)=G_{m}\operatorname {Re} (e^{j(\omega t+\phi -{\frac {\pi }{2}})})}
g
(
t
)
=
G
m
Re
(
e
j
∗
(
ϕ
−
π
2
)
e
j
ω
t
)
{\displaystyle g(t)=G_{m}\operatorname {Re} (e^{j*(\phi -{\frac {\pi }{2}})}e^{j\omega t})}
g
(
t
)
=
Re
(
G
m
e
j
∗
(
ϕ
−
π
2
)
e
j
ω
t
)
{\displaystyle g(t)=\operatorname {Re} (G_{m}e^{j*(\phi -{\frac {\pi }{2}})}e^{j\omega t})}
g
(
t
)
=
Re
(
G
e
j
ω
t
)
{\displaystyle g(t)=\operatorname {Re} (\mathbb {G} e^{j\omega t})}
G
=
G
m
e
j
∗
(
ϕ
−
π
2
)
=
G
m
(
c
o
s
(
ϕ
−
π
2
)
+
j
∗
s
i
n
(
ϕ
−
π
2
)
)
{\displaystyle \mathbb {G} =G_{m}e^{j*(\phi -{\frac {\pi }{2}})}=G_{m}(cos(\phi -{\frac {\pi }{2}})+j*sin(\phi -{\frac {\pi }{2}}))}
=
G
m
c
o
s
(
ϕ
−
π
2
)
+
j
G
m
s
i
n
(
ϕ
−
π
2
)
{\displaystyle =G_{m}cos(\phi -{\frac {\pi }{2}})+jG_{m}sin(\phi -{\frac {\pi }{2}})}
=
G
m
(
c
o
s
(
ϕ
)
c
o
s
(
π
2
)
+
s
i
n
(
ϕ
)
s
i
n
(
π
2
)
)
+
j
G
m
(
s
i
n
(
ϕ
)
c
o
s
(
π
2
)
−
c
o
s
(
ϕ
)
s
i
n
(
π
2
)
)
{\displaystyle =G_{m}(cos(\phi )cos({\frac {\pi }{2}})+sin(\phi )sin({\frac {\pi }{2}}))+jG_{m}(sin(\phi )cos({\frac {\pi }{2}})-cos(\phi )sin({\frac {\pi }{2}}))}
=
G
m
s
i
n
(
ϕ
)
−
j
G
m
c
o
s
(
ϕ
)
{\displaystyle =G_{m}sin(\phi )-jG_{m}cos(\phi )}