Home
Random
Log in
Settings
Donations
About Wikibooks
Disclaimers
Search
Circuit Theory/Phasors/proof2
Language
Watch
Edit
<
Circuit Theory
|
Phasors
g
(
t
)
=
G
m
s
i
n
(
ω
t
)
{\displaystyle g(t)=G_{m}sin(\omega t)}
starting point
g
(
t
)
=
G
m
c
o
s
(
ω
t
−
π
2
)
{\displaystyle g(t)=G_{m}cos(\omega t-{\frac {\pi }{2}})}
g
(
t
)
=
G
m
Re
(
e
j
(
ω
t
−
π
2
)
)
{\displaystyle g(t)=G_{m}\operatorname {Re} (e^{j(\omega t-{\frac {\pi }{2}})})}
g
(
t
)
=
G
m
Re
(
e
−
j
∗
π
2
e
j
ω
t
)
{\displaystyle g(t)=G_{m}\operatorname {Re} (e^{-j*{\frac {\pi }{2}}}e^{j\omega t})}
g
(
t
)
=
Re
(
G
m
e
−
j
∗
π
2
e
j
ω
t
)
{\displaystyle g(t)=\operatorname {Re} (G_{m}e^{-j*{\frac {\pi }{2}}}e^{j\omega t})}
g
(
t
)
=
Re
(
G
e
j
ω
t
)
{\displaystyle g(t)=\operatorname {Re} (\mathbb {G} e^{j\omega t})}
G
=
G
m
e
−
j
∗
π
2
=
G
m
(
c
o
s
(
−
π
2
)
+
j
∗
s
i
n
(
−
π
2
)
)
=
−
j
G
m
{\displaystyle \mathbb {G} =G_{m}e^{-j*{\frac {\pi }{2}}}=G_{m}(cos(-{\frac {\pi }{2}})+j*sin(-{\frac {\pi }{2}}))=-jGm}