Home
Random
Log in
Settings
Donations
About Wikibooks
Disclaimers
Search
Circuit Theory/Phasors/proof1
Language
Watch
Edit
<
Circuit Theory
|
Phasors
g
(
t
)
=
G
m
c
o
s
(
ω
t
)
{\displaystyle g(t)=G_{m}cos(\omega t)}
starting point
g
(
t
)
=
G
m
Re
(
e
j
ω
t
)
{\displaystyle g(t)=G_{m}\operatorname {Re} (e^{j\omega t})}
g
(
t
)
=
G
m
Re
(
e
j
∗
0
e
j
ω
t
)
{\displaystyle g(t)=G_{m}\operatorname {Re} (e^{j*0}e^{j\omega t})}
g
(
t
)
=
Re
(
G
m
e
j
0
e
j
ω
t
)
{\displaystyle g(t)=\operatorname {Re} (G_{m}e^{j0}e^{j\omega t})}
g
(
t
)
=
Re
(
G
e
j
ω
t
)
{\displaystyle g(t)=\operatorname {Re} (\mathbb {G} e^{j\omega t})}
G
=
G
m
e
j
0
=
G
m
(
c
o
s
(
0
)
+
j
∗
s
i
n
(
0
)
)
=
G
m
{\displaystyle \mathbb {G} =G_{m}e^{j0}=G_{m}(cos(0)+j*sin(0))=Gm}