Chemical Sciences: A Manual for CSIR-UGC National Eligibility Test for Lectureship and JRF/Hybrid mass spectrometer
This page was imported and needs to be de-wikified. Books should use wikilinks rather sparsely, and only to reference technical or esoteric terms that are critical to understanding the content. Most if not all wikilinks should simply be removed. Please remove {{dewikify}} after the page is dewikified. |
A hybrid mass spectrometer is a device for tandem mass spectrometry that consists of a combination of two or more m/z separation devices of different types.
Notation
editThe different m/z separation elements of a hybrid mass spectrometer can be represented by a shorthand notation. The symbol Q represents a quadrupole mass analyzer, q is a radio frequency collision quadrupole, TOF is a time-of-flight mass spectrometer, B is a magnetic sector and E is an electric sector.
Sector quadrupole
editA sector instrument can be combined with a collision quadrupole and quadrupole mass analyzer to form a hybrid instrument. [1] A BEqQ configuration with a magnetic sector (B), electric sector (E), collision quadrupole (q) and m/z selection quadrupole (Q) have been constructed[2][3] and an instrument with two electric sectors (BEEQ) has been described.[4]
Quadrupole time-of-flight
editA triple quadrupole mass spectrometer with the final quadrupole replaced by a time-of-flight device is known is a quadrupole time-of-flight instrument.[5][6] Such an instrument can be represented as QqTOF.
Ion trap time-of-flight
editIn an ion trap instrument, ions are trapped in a quadrupole ion trap and then injected into the TOF. The trap can be 3-D[7] or a linear trap.[8]
Linear ion trap and Fourier transform mass analyzers
editA linear ion trap combined with a Fourier transform ion cyclotron resonance[9] or orbitrap[10][11][12] mass spectrometer is marketed by Thermo Scientific as the LTQ FT and LTQ Orbitrap, respectively.
References
edit- ↑ Glish, G.; McLuckey, S; Ridley, T; Cooks, R (1982). "A new "hybrid" sector/quadrupole mass spectrometer for mass spectrometry/mass spectrometry". International Journal or Mass Spectrometry and Ion Physics. 41: 157. doi:10.1016/0020-7381(82)85032-8.
- ↑ Schoen, A.; Amy, J.W.; Ciupek, J.D.; Cooks, R.G.; Dobberstein, P.; Jung, G. (1985). "A hybrid BEQQ mass spectrometer". International Journal of Mass Spectrometry and Ion Processes. 65: 125. doi:10.1016/0168-1176(85)85059-X.
- ↑ Harrison, A. (1986). "A hybrid BEQQ mass spectrometer for studies in gaseous ion chemistry". International Journal of Mass Spectrometry and Ion Processes. 74: 13. doi:10.1016/0168-1176(86)85020-0.
- ↑ Winger, B. E.; Laue, H. -J.; Horning, S. R.; Julian, R. K.; Lammert, S. A.; Riederer, D. E.; Cooks, R. G. (1992). "Hybrid BEEQ tandem mass spectrometer for the study of ion/surface collision processes". Review of Scientific Instruments. 63: 5613. doi:10.1063/1.1143391.
- ↑ Shevchenko A, Loboda A, Shevchenko A, Ens W, Standing KG (2000). "MALDI quadrupole time-of-flight mass spectrometry: a powerful tool for proteomic research". Anal. Chem. 72 (9): 2132–41. doi:10.1021/ac9913659. PMID 10815976.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - ↑ Steen H, Küster B, Mann M (2001). "Quadrupole time-of-flight versus triple-quadrupole mass spectrometry for the determination of phosphopeptides by precursor ion scanning". J Mass Spectrom. 36 (7): 782–90. doi:10.1002/jms.174. PMID 11473401.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - ↑ Fountain ST, Lee H, Lubman DM (1994). "Ion fragmentation activated by matrix-assisted laser desorption/ionization in an ion-trap/reflectron time-of-flight device". Rapid Commun. Mass Spectrom. 8 (5): 407–16. doi:10.1002/rcm.1290080514. PMID 7517726.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - ↑ Campbell, J. M.; Collings, B. A.; Douglas, D. J. (1998). "A new linear ion trap time-of-flight system with tandem mass spectrometry capabilities". Rapid Communications in Mass Spectrometry. 12: 1463. doi:10.1002/(SICI)1097-0231(19981030)12:20<1463::AID-RCM357>3.0.CO;2-H.
- ↑ Syka JE, Marto JA, Bai DL; et al. (2004). "Novel linear quadrupole ion trap/FT mass spectrometer: performance characterization and use in the comparative analysis of histone H3 post-translational modifications". J. Proteome Res. 3 (3): 621–6. doi:10.1021/pr0499794. PMID 15253445.
{{cite journal}}
: Explicit use of et al. in:|author=
(help)CS1 maint: multiple names: authors list (link) - ↑ Makarov A, Denisov E, Kholomeev A, Balschun W, Lange O, Strupat K, Horning S (2006). "Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer". Anal. Chem. 78 (7): 2113–20. doi:10.1021/ac0518811. PMID 16579588.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ↑ Olsen JV, de Godoy LM, Li G; et al. (2005). "Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap". Mol. Cell Proteomics. 4 (12): 2010–21. doi:10.1074/mcp.T500030-MCP200. PMID 16249172.
{{cite journal}}
: Explicit use of et al. in:|author=
(help); Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - ↑ Yates JR, Cociorva D, Liao L, Zabrouskov V (2006). "Performance of a linear ion trap-Orbitrap hybrid for peptide analysis". Anal. Chem. 78 (2): 493–500. doi:10.1021/ac0514624. PMID 16408932.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link)