Chemical Sciences: A Manual for CSIR-UGC National Eligibility Test for Lectureship and JRF/Hybrid mass spectrometer

A hybrid mass spectrometer is a device for tandem mass spectrometry that consists of a combination of two or more m/z separation devices of different types.

Hybrid linear ion trap Fourier transform ion cyclotron resonance mass spectrometer

Notation

edit

The different m/z separation elements of a hybrid mass spectrometer can be represented by a shorthand notation. The symbol Q represents a quadrupole mass analyzer, q is a radio frequency collision quadrupole, TOF is a time-of-flight mass spectrometer, B is a magnetic sector and E is an electric sector.

Sector quadrupole

edit

A sector instrument can be combined with a collision quadrupole and quadrupole mass analyzer to form a hybrid instrument. [1] A BEqQ configuration with a magnetic sector (B), electric sector (E), collision quadrupole (q) and m/z selection quadrupole (Q) have been constructed[2][3] and an instrument with two electric sectors (BEEQ) has been described.[4]

Quadrupole time-of-flight

edit
 
Hybrid quadrupole time-of-flight mass spectrometer.

A triple quadrupole mass spectrometer with the final quadrupole replaced by a time-of-flight device is known is a quadrupole time-of-flight instrument.[5][6] Such an instrument can be represented as QqTOF.

Ion trap time-of-flight

edit

In an ion trap instrument, ions are trapped in a quadrupole ion trap and then injected into the TOF. The trap can be 3-D[7] or a linear trap.[8]

Linear ion trap and Fourier transform mass analyzers

edit

A linear ion trap combined with a Fourier transform ion cyclotron resonance[9] or orbitrap[10][11][12] mass spectrometer is marketed by Thermo Scientific as the LTQ FT and LTQ Orbitrap, respectively.

References

edit
  1. Glish, G.; McLuckey, S; Ridley, T; Cooks, R (1982). "A new "hybrid" sector/quadrupole mass spectrometer for mass spectrometry/mass spectrometry". International Journal or Mass Spectrometry and Ion Physics. 41: 157. doi:10.1016/0020-7381(82)85032-8.
  2. Schoen, A.; Amy, J.W.; Ciupek, J.D.; Cooks, R.G.; Dobberstein, P.; Jung, G. (1985). "A hybrid BEQQ mass spectrometer". International Journal of Mass Spectrometry and Ion Processes. 65: 125. doi:10.1016/0168-1176(85)85059-X.
  3. Harrison, A. (1986). "A hybrid BEQQ mass spectrometer for studies in gaseous ion chemistry". International Journal of Mass Spectrometry and Ion Processes. 74: 13. doi:10.1016/0168-1176(86)85020-0.
  4. Winger, B. E.; Laue, H. -J.; Horning, S. R.; Julian, R. K.; Lammert, S. A.; Riederer, D. E.; Cooks, R. G. (1992). "Hybrid BEEQ tandem mass spectrometer for the study of ion/surface collision processes". Review of Scientific Instruments. 63: 5613. doi:10.1063/1.1143391.
  5. Shevchenko A, Loboda A, Shevchenko A, Ens W, Standing KG (2000). "MALDI quadrupole time-of-flight mass spectrometry: a powerful tool for proteomic research". Anal. Chem. 72 (9): 2132–41. doi:10.1021/ac9913659. PMID 10815976. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  6. Steen H, Küster B, Mann M (2001). "Quadrupole time-of-flight versus triple-quadrupole mass spectrometry for the determination of phosphopeptides by precursor ion scanning". J Mass Spectrom. 36 (7): 782–90. doi:10.1002/jms.174. PMID 11473401. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  7. Fountain ST, Lee H, Lubman DM (1994). "Ion fragmentation activated by matrix-assisted laser desorption/ionization in an ion-trap/reflectron time-of-flight device". Rapid Commun. Mass Spectrom. 8 (5): 407–16. doi:10.1002/rcm.1290080514. PMID 7517726. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  8. Campbell, J. M.; Collings, B. A.; Douglas, D. J. (1998). "A new linear ion trap time-of-flight system with tandem mass spectrometry capabilities". Rapid Communications in Mass Spectrometry. 12: 1463. doi:10.1002/(SICI)1097-0231(19981030)12:20<1463::AID-RCM357>3.0.CO;2-H.
  9. Syka JE, Marto JA, Bai DL; et al. (2004). "Novel linear quadrupole ion trap/FT mass spectrometer: performance characterization and use in the comparative analysis of histone H3 post-translational modifications". J. Proteome Res. 3 (3): 621–6. doi:10.1021/pr0499794. PMID 15253445. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  10. Makarov A, Denisov E, Kholomeev A, Balschun W, Lange O, Strupat K, Horning S (2006). "Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer". Anal. Chem. 78 (7): 2113–20. doi:10.1021/ac0518811. PMID 16579588.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. Olsen JV, de Godoy LM, Li G; et al. (2005). "Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap". Mol. Cell Proteomics. 4 (12): 2010–21. doi:10.1074/mcp.T500030-MCP200. PMID 16249172. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  12. Yates JR, Cociorva D, Liao L, Zabrouskov V (2006). "Performance of a linear ion trap-Orbitrap hybrid for peptide analysis". Anal. Chem. 78 (2): 493–500. doi:10.1021/ac0514624. PMID 16408932. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)