Category Theory/References

Textbooks freely available online

edit

Other textbooks

edit
  • Awodey, Steven (2006). Category Theory (Oxford Logic Guides 49). Oxford University Press.
  • Borceux, Francis (1994). Handbook of categorical algebra (Encyclopedia of Mathematics and its Applications 50-52). Cambridge Univ. Press.
  • Freyd, Peter J. & Scedrov, Andre, (1990). Categories, allegories (North Holland Mathematical Library 39). North Holland.
  • Hatcher, William S. (1982). The Logical Foundations of Mathematics, 2nd ed. Pergamon. Chpt. 8 is an idiosyncratic introduction to category theory, presented as a first order theory.
  • Lawvere, William, & Rosebrugh, Robert (2003). Sets for mathematics. Cambridge University Press.
  • Lawvere, William, & Schanuel, Steve (1997). Conceptual mathematics: a first introduction to categories. Cambridge University Press.
  • Leinster, Tom, Basic Category Theory, Cambridge University Press, 2014.
  • McLarty, Colin (1991). Elementary Categories, Elementary Toposes. Oxford University Press.
  • Mac Lane, Saunders (1998). Categories for the Working Mathematician'. 2nd ed. (Graduate Texts in Mathematics 5). Springer-Verlag.
  • ——— and Garrett Birkhoff (1967). Algebra. 1999 reprint of the 2nd ed., Chelsea. ISBN 0-8218-1646-2. An introduction to the subject making judicious use of category theoretic concepts, especially commutative diagrams.
  • May, Peter (1999). A Concise Course in Algebraic Topology. University of Chicago Press, ISBN 0-226-51183-9.
  • Pedicchio, Maria Cristina & Tholen, Walter (2004). Categorical foundations (Encyclopedia of Mathematics and its Applications 97). Cambridge University Press.
  • Pierce, Benjamin (1991). Basic Category Theory for Computer Scientists. MIT Press.
  • Taylor, Paul (1999). Practical Foundations of Mathematics. Cambridge University Press. An introduction to the connection between category theory and constructive mathematics.
edit