Basic Limit Exercises
edit
Evaluate the following limits or state that the limit does not exist.
8.
lim
x
→
−
1
−
1
−
x
2
{\displaystyle \lim _{x\to -1^{-}}{\sqrt {1-x^{2}}}}
The limit does not exist.
The limit does not exist.
Solutions
Evaluate the following limits or state that the limit does not exist.
12.
lim
x
→
4
1
x
−
4
{\displaystyle \lim _{x\to 4}{\frac {1}{x-4}}}
The limit does not exist.
The limit does not exist.
13.
lim
x
→
2
1
x
−
2
{\displaystyle \lim _{x\to 2}{\frac {1}{x-2}}}
The limit does not exist.
The limit does not exist.
20.
lim
x
→
0
|
x
|
x
{\displaystyle \lim _{x\to 0}{\frac {|x|}{x}}}
The limit does not exist.
The limit does not exist.
22.
lim
x
→
3
x
2
+
16
x
−
3
{\displaystyle \lim _{x\to 3}{\frac {\sqrt {x^{2}+16}}{x-3}}}
The limit does not exist.
The limit does not exist.
25.
lim
x
→
3
x
+
3
x
2
−
9
{\displaystyle \lim _{x\to 3}{\frac {x+3}{x^{2}-9}}}
The limit does not exist.
The limit does not exist.
31.
lim
x
→
1
5
x
x
2
+
2
x
−
3
{\displaystyle \lim _{x\to 1}{\frac {5x}{x^{2}+2x-3}}}
The limit does not exist.
The limit does not exist.
32.
lim
x
→
−
1
ln
(
x
2
−
1
)
{\displaystyle \lim _{x\to -1}\ln({\sqrt {x^{2}-1}})}
The limit does not exist.
The limit does not exist.
33.
lim
x
→
1
arcsin
(
x
)
{\displaystyle \lim _{x\to 1}\arcsin(x)}
The limit does not exist.
The limit does not exist.
Solutions
Evaluate the following limits or state that the limit does not exist.
Solutions
Limits of Piecewise Functions
edit
Evaluate the following limits or state that the limit does not exist.
48. Consider the function
f
(
x
)
=
{
(
x
−
2
)
2
if
x
<
2
x
−
3
if
x
≥
2
{\displaystyle f(x)={\begin{cases}(x-2)^{2}&{\text{if }}x<2\\x-3&{\text{if }}x\geq 2\end{cases}}}
c.
lim
x
→
2
f
(
x
)
{\displaystyle \lim _{x\to 2}f(x)}
49. Consider the function
g
(
x
)
=
{
−
2
x
+
1
if
x
≤
0
x
+
1
if
0
<
x
<
4
x
2
+
2
if
x
≥
4
{\displaystyle g(x)={\begin{cases}-2x+1&{\text{if }}x\leq 0\\x+1&{\text{if }}0<x<4\\x^{2}+2&{\text{if }}x\geq 4\end{cases}}}
50. Consider the function
h
(
x
)
=
{
2
x
−
3
if
x
<
2
8
if
x
=
2
−
x
+
3
if
x
>
2
{\displaystyle h(x)={\begin{cases}2x-3&{\text{if }}x<2\\8&{\text{if }}x=2\\-x+3&{\text{if }}x>2\end{cases}}}
Solutions
51. Use the intermediate value theorem to show that there exists a value
f
(
x
)
=
3
{\displaystyle f(x)=3}
for
f
(
x
)
=
x
+
1
x
{\displaystyle f(x)={\sqrt {x}}+{\frac {1}{\sqrt {x}}}}
from
1
≤
x
≤
9
{\displaystyle 1\leq x\leq 9}
. If you cannot use the intermediate value theorem to show this, explain why.
Notice
f
(
x
)
{\displaystyle f(x)}
is continuous from
x
∈
[
1
,
9
]
{\displaystyle x\in \left[1,9\right]}
. Ergo, the intermediate value theorem applies. For all
y
∈
[
2
,
10
3
]
{\displaystyle y\in \left[2,{\frac {10}{3}}\right]}
, there exists a
c
∈
(
1
,
9
)
{\displaystyle c\in (1,9)}
so that
f
(
c
)
=
3
{\displaystyle f(c)=3}
.
◼
{\displaystyle \blacksquare }
Notice
f
(
x
)
{\displaystyle f(x)}
is continuous from
x
∈
[
1
,
9
]
{\displaystyle x\in \left[1,9\right]}
. Ergo, the intermediate value theorem applies. For all
y
∈
[
2
,
10
3
]
{\displaystyle y\in \left[2,{\frac {10}{3}}\right]}
, there exists a
c
∈
(
1
,
9
)
{\displaystyle c\in (1,9)}
so that
f
(
c
)
=
3
{\displaystyle f(c)=3}
.
◼
{\displaystyle \blacksquare }
52. Use the intermediate value theorem to show that there exists an
x
=
μ
{\displaystyle x=\mu }
so that
f
(
μ
)
=
π
4
{\displaystyle f(\mu )={\frac {\pi }{4}}}
for
f
(
x
)
=
sin
(
x
)
−
cos
(
x
)
ln
x
{\displaystyle f(x)={\frac {\sin(x)-\cos(x)}{\ln {x}}}}
from
π
≤
x
≤
9
4
π
{\displaystyle \pi \leq x\leq {\frac {9}{4}}\pi }
. If you cannot use the intermediate value theorem to show this, explain why.
Notice
f
(
x
)
{\displaystyle f(x)}
is continuous from
x
∈
[
π
,
9
4
π
]
{\displaystyle x\in \left[\pi ,{\frac {9}{4}}\pi \right]}
. Ergo, the intermediate value theorem applies.
f
(
π
)
=
1
ln
(
π
)
{\displaystyle f(\pi )={\frac {1}{\ln(\pi )}}}
f
(
9
4
π
)
=
0
{\displaystyle f\left({\frac {9}{4}}\pi \right)=0}
It is known the following is true:
1
≥
π
4
≥
0
{\displaystyle 1\geq {\frac {\pi }{4}}\geq 0}
. From there, we can directly argue the following:
1
ln
(
π
)
≥
1
⇒
1
ln
(
π
)
≥
1
≥
π
4
≥
0
⇒
1
ln
(
π
)
≥
π
4
≥
0
{\displaystyle {\begin{aligned}{\frac {1}{\ln(\pi )}}\geq 1&\Rightarrow {\frac {1}{\ln(\pi )}}\geq 1\geq {\frac {\pi }{4}}\geq 0\\&\Rightarrow {\frac {1}{\ln(\pi )}}\geq {\frac {\pi }{4}}\geq 0\end{aligned}}}
By the intermediate value theorem, if
f
(
x
)
{\displaystyle f(x)}
is continuous from
x
∈
[
π
,
9
4
π
]
{\displaystyle x\in \left[\pi ,{\frac {9}{4}}\pi \right]}
, then there exists an
x
=
μ
{\displaystyle x=\mu }
so that
f
(
9
4
π
)
≤
f
(
μ
)
≤
f
(
π
)
{\displaystyle f\left({\frac {9}{4}}\pi \right)\leq f(\mu )\leq f(\pi )}
for
μ
∈
[
π
,
9
4
π
]
{\displaystyle \mu \in \left[\pi ,{\frac {9}{4}}\pi \right]}
.
◼
{\displaystyle \blacksquare }
Notice
f
(
x
)
{\displaystyle f(x)}
is continuous from
x
∈
[
π
,
9
4
π
]
{\displaystyle x\in \left[\pi ,{\frac {9}{4}}\pi \right]}
. Ergo, the intermediate value theorem applies.
f
(
π
)
=
1
ln
(
π
)
{\displaystyle f(\pi )={\frac {1}{\ln(\pi )}}}
f
(
9
4
π
)
=
0
{\displaystyle f\left({\frac {9}{4}}\pi \right)=0}
It is known the following is true:
1
≥
π
4
≥
0
{\displaystyle 1\geq {\frac {\pi }{4}}\geq 0}
. From there, we can directly argue the following:
1
ln
(
π
)
≥
1
⇒
1
ln
(
π
)
≥
1
≥
π
4
≥
0
⇒
1
ln
(
π
)
≥
π
4
≥
0
{\displaystyle {\begin{aligned}{\frac {1}{\ln(\pi )}}\geq 1&\Rightarrow {\frac {1}{\ln(\pi )}}\geq 1\geq {\frac {\pi }{4}}\geq 0\\&\Rightarrow {\frac {1}{\ln(\pi )}}\geq {\frac {\pi }{4}}\geq 0\end{aligned}}}
By the intermediate value theorem, if
f
(
x
)
{\displaystyle f(x)}
is continuous from
x
∈
[
π
,
9
4
π
]
{\displaystyle x\in \left[\pi ,{\frac {9}{4}}\pi \right]}
, then there exists an
x
=
μ
{\displaystyle x=\mu }
so that
f
(
9
4
π
)
≤
f
(
μ
)
≤
f
(
π
)
{\displaystyle f\left({\frac {9}{4}}\pi \right)\leq f(\mu )\leq f(\pi )}
for
μ
∈
[
π
,
9
4
π
]
{\displaystyle \mu \in \left[\pi ,{\frac {9}{4}}\pi \right]}
.
◼
{\displaystyle \blacksquare }
Solutions