Calculus/Integration techniques/Irrational Functions
Integration of irrational functions is more difficult than rational functions, and many cannot be done. However, there are some particular types that can be reduced to rational forms by suitable substitutions.
Type 1Edit
Integrand contains
Use the substitution .
- Example
Find .
Find .
Type 2Edit
Integral is of the form
Write as .
- Example
Find .
Type 3Edit
Integrand contains , or
This was discussed in "trigonometric substitutions above". Here is a summary:
- For , use .
- For , use .
- For , use .
Type 4Edit
Integral is of the form
Use the substitution .
- Example
Find .
Type 5Edit
Other rational expressions with the irrational function
- If , we can use .
- If , we can use .
- If can be factored as , we can use .
- If and can be factored as , we can use