Formular Number 
Name 
Formular 
Formular with R


7.1.1, 7.1.2, 7.2.1 
ztransformation (using either $\mu$ or $\mu _{0}$ ) 
$z={\frac {{\bar {x}}\mu }{\sigma /{\sqrt {n}}}}$ 
Example

7.2.2 
ttransformation 
$t={\frac {{\bar {x}}\mu _{0}}{s/{\sqrt {n}}}}$ 
Example

7.2.3 
Test statistic when sampling from a population that is not normally distributed 
$z={\frac {{\bar {x}}\mu _{0}}{s/{\sqrt {n}}}}$ 
Example

7.3.1 
Test statistic when sampling from normally distributed populations:population variances known 
$z={\frac {({\bar {x}}_{1}{\bar {x}}_{2})(\mu _{1}\mu _{2})_{0}}{\sqrt {{\frac {\sigma _{1}^{2}}{n_{1}}}+{\frac {\sigma _{2}^{2}}{n_{2}}}}}}$ 
Example

7.3.2 
Test statistic when sampling from normally distributed populations:population variances unknown and equal 
Example 
Example

7.3.3, 7.3.4 
Test statistic when sampling from normally distributed populations: population variances unknown and unequal 
Example 
Example

7.3.5 
Sampling from populations that are not normally distributed 
Example 
Example

7.4.1 
Test statistic for paired differences when the population variance is unknown 
Example 
Example

7.4.2 
Test statistic for paired differences when the population variance is known 
Example 
Example

7.5.1 
Test statistic for a single population proportion 
Example 
Example

7.6.1, 7.6.2 
Test statistic for the difference between two population proportions 
Example 
Example

7.7.1 
Test statistic for a single population variance 
Example 
Example

7.8.1 
Variance ratio 
Example 
Example

7.9.1, 7.9.2 
Upper and lower critical values for � x 
Example 
Example

7.10.1, 7.10.2 
Critical value for determining sample size to control type II errors 
Example 
Example

7.10.3 
Sample size to control type II errors 
Example 
Example

5.5.3 
Continuity correction when x > np 
Example 
Example

5.6.1 
ztransformation for difference between two proportions 
Example 
Example

Symbol Key 
