Home
Random
Log in
Settings
Donations
About Wikibooks
Disclaimers
Search
Arithmetic Course/Differential Equation/Second Order Equation
Language
Watch
Edit
<
Arithmetic Course
|
Differential Equation
Contents
1
Second Order Differential Equation
2
Solving 2nd Ordered Differential Equation
2.1
Case 1
2.2
Case 2
2.3
Case 3
Second Order Differential Equation
edit
Second Ordered Differential Equation has the general form
A
d
2
f
(
x
)
d
x
2
+
B
d
f
(
x
)
d
x
+
C
=
0
{\displaystyle A{\frac {d^{2}f(x)}{dx^{2}}}+B{\frac {df(x)}{dx}}+C=0}
Which can be expressed as
d
2
f
(
x
)
d
x
2
+
B
A
d
f
(
x
)
d
x
+
C
A
=
0
{\displaystyle {\frac {d^{2}f(x)}{dx^{2}}}+{\frac {B}{A}}{\frac {df(x)}{dx}}+{\frac {C}{A}}=0}
Solving 2nd Ordered Differential Equation
edit
A
d
2
f
(
x
)
d
x
2
+
B
d
f
(
x
)
d
x
+
C
=
0
{\displaystyle A{\frac {d^{2}f(x)}{dx^{2}}}+B{\frac {df(x)}{dx}}+C=0}
d
2
f
(
x
)
d
x
2
+
B
A
d
f
(
x
)
d
x
+
C
A
=
0
{\displaystyle {\frac {d^{2}f(x)}{dx^{2}}}+{\frac {B}{A}}{\frac {df(x)}{dx}}+{\frac {C}{A}}=0}
s
2
+
B
A
s
+
C
A
=
0
{\displaystyle s^{2}+{\frac {B}{A}}s+{\frac {C}{A}}=0}
s
=
(
−
α
±
α
2
−
β
2
)
x
{\displaystyle s=(-\alpha \pm {\sqrt {\alpha ^{2}-\beta ^{2}}})x}
s
=
(
−
α
±
λ
)
x
{\displaystyle s=(-\alpha \pm \lambda )x}
Case 1
edit
λ
=
0
{\displaystyle \lambda =0}
α
2
=
λ
2
{\displaystyle \alpha ^{2}=\lambda ^{2}}
s
=
−
α
x
{\displaystyle s=-\alpha x}
f
(
x
)
=
e
(
−
α
x
)
{\displaystyle f(x)=e^{(}-\alpha x)}
Case 2
edit
λ
>
0
{\displaystyle \lambda >0}
α
2
>
λ
2
{\displaystyle \alpha ^{2}>\lambda ^{2}}
s
=
−
α
x
±
λ
x
{\displaystyle s=-\alpha x\pm \lambda x}
f
(
x
)
=
e
(
α
x
)
[
e
(
−
α
x
)
+
e
(
−
α
x
)
]
{\displaystyle f(x)=e^{(}\alpha x)[e^{(}-\alpha x)+e^{(}-\alpha x)]}
f
(
x
)
=
A
e
(
α
x
)
C
o
s
λ
x
{\displaystyle f(x)=Ae^{(}\alpha x)Cos\lambda x}
A
=
1
2
e
(
α
x
)
{\displaystyle A={\frac {1}{2}}e^{(}\alpha x)}
Case 3
edit
λ
<
0
{\displaystyle \lambda <0}
α
2
<
λ
2
{\displaystyle \alpha ^{2}<\lambda ^{2}}
s
=
−
α
x
±
j
λ
x
{\displaystyle s=-\alpha x\pm j\lambda x}
f
(
x
)
=
e
(
−
α
x
)
[
e
(
α
x
)
+
e
(
−
j
α
x
)
]
{\displaystyle f(x)=e^{(}-\alpha x)[e^{(}\alpha x)+e^{(}-j\alpha x)]}
f
(
x
)
=
A
e
(
α
x
)
S
i
n
λ
x
{\displaystyle f(x)=Ae^{(}\alpha x)Sin\lambda x}
A
=
1
2
j
e
(
α
x
)
{\displaystyle A={\frac {1}{2j}}e^{(}\alpha x)}