The two most important things in Theory of The Fourier Transform are "differential calculus" and "integral calculus". The readers are required to learn "differential calculus" and "integral calculus" before studying the Theory of The Fourier Transform. Hence, we will learn them on this page.
Differential calculus
edit
The graph of a function, drawn in black, and a tangent line to that function, drawn in red. The slope of the tangent line is equal to the derivative of the function at the marked point.
Differentiation is the process of finding a derivative of the function
f
(
x
)
{\displaystyle f(x)}
in the independent input x . The differentiation of
f
(
x
)
{\displaystyle f(x)}
is denoted as
f
′
(
x
)
{\displaystyle f'(x)}
or
d
d
x
f
(
x
)
{\displaystyle {\frac {d}{dx}}f(x)}
. Both of the two notations are same meaning.
Differentiation is manipulated as follows:
d
d
x
(
x
3
+
1
)
{\displaystyle {\frac {d}{dx}}(x^{3}+1)}
=
3
x
3
−
1
{\displaystyle =3x^{3-1}}
=
3
x
2
{\displaystyle =3x^{2}}
As you see, in differentiation, the number of the degree of the variable is multiplied to the variable, while the degree is subtracted one from itself at the same time. The term which doesn't have the variable
x
{\displaystyle x}
is just removed in differentiation.
d
d
x
(
x
5
+
x
2
+
28
)
{\displaystyle {\frac {d}{dx}}(x^{5}+x^{2}+28)}
=
5
x
5
−
1
+
2
x
2
−
1
{\displaystyle =5x^{5-1}+2x^{2-1}}
28 doesn't have the variable x , so 28 is removed
=
5
x
4
+
2
x
1
{\displaystyle =5x^{4}+2x^{1}}
=
5
x
4
+
2
x
{\displaystyle =5x^{4}+2x}
d
d
x
(
x
7
+
x
4
+
x
+
7
)
{\displaystyle {\frac {d}{dx}}(x^{7}+x^{4}+x+7)}
=
7
x
7
−
1
+
4
x
4
−
1
+
1
x
1
−
1
{\displaystyle =7x^{7-1}+4x^{4-1}+1x^{1-1}}
7 doesn't have the variable x , so 7 is removed
=
7
x
6
+
4
x
3
+
+
1
x
0
{\displaystyle =7x^{6}+4x^{3}++1x^{0}}
=
7
x
6
+
4
x
3
+
1
{\displaystyle =7x^{6}+4x^{3}+1}
(1)
d
d
x
(
x
4
+
15
)
=
{\displaystyle {\frac {d}{dx}}(x^{4}+15)=}
(2)
d
d
x
(
x
5
+
x
3
+
x
)
=
{\displaystyle {\frac {d}{dx}}(x^{5}+x^{3}+x)=}
If you differentiate
f
(
x
)
=
x
3
{\displaystyle f(x)=x^{3}}
or
f
(
x
)
=
x
3
−
2
{\displaystyle f(x)=x^{3}-2}
, each of them become
f
′
(
x
)
=
3
x
2
{\displaystyle f'(x)=3x^{2}}
. Then let's think of the opposite case. A function is provided, and when the function is differentiated, the function became
f
′
(
x
)
=
3
x
2
{\displaystyle f'(x)=3x^{2}}
. What's the original function? To find the original function, the integral calculus is used. Integration of
f
(
x
)
{\displaystyle f(x)}
is denoted as
∫
f
(
x
)
d
x
{\displaystyle \int f(x)dx}
.
Integration is manipulated as follows:
∫
3
x
2
d
x
{\displaystyle \int 3x^{2}dx}
=
3
x
2
+
1
2
+
1
+
C
{\displaystyle ={\frac {3x^{2+1}}{2+1}}+C}
=
x
3
+
C
{\displaystyle =x^{3}+C}
C
{\displaystyle C}
denotes Constant in the equation.
More generally speaking, the integration of f(x) is defined as:
∫
x
n
d
x
=
x
n
+
1
n
+
1
+
C
{\displaystyle \int x^{n}dx={\frac {x^{n+1}}{n+1}}+C}
Definite integral is defined as follows:
∫
a
b
f
(
x
)
d
x
{\displaystyle \int _{a}^{b}f(x)dx}
=
[
F
(
x
)
]
a
b
{\displaystyle =[F(x)]_{a}^{b}}
=
F
(
b
)
−
F
(
a
)
{\displaystyle =F(b)-F(a)}
where
F
(
x
)
=
∫
f
(
x
)
d
x
{\displaystyle F(x)=\int f(x)dx}
(1)
∫
4
x
d
x
{\displaystyle \int 4xdx}
=
4
x
1
+
1
1
+
1
+
C
{\displaystyle ={\frac {4x^{1+1}}{1+1}}+C}
=
2
x
2
+
C
{\displaystyle =2x^{2}+C}
(2)
∫
1
2
(
2
x
+
1
)
d
x
{\displaystyle \int _{1}^{2}(2x+1)dx}
=
[
x
2
+
x
]
1
2
{\displaystyle =[x^{2}+x]_{1}^{2}}
=
(
4
+
2
)
−
(
1
+
1
)
{\displaystyle =(4+2)-(1+1)}
=
4
{\displaystyle =4}
(1)
∫
6
x
d
x
=
{\displaystyle \int 6xdx=}
(2)
∫
0
2
(
3
x
2
+
3
)
d
x
=
{\displaystyle \int _{0}^{2}(3x^{2}+3)dx=}
Euler's number
e
{\displaystyle e}
(also known as Napier's constant) has special features in differentiation and integration:
∫
e
x
d
x
=
e
x
+
C
{\displaystyle \int e^{x}dx=e^{x}+C}
d
d
x
e
x
=
e
x
{\displaystyle {\frac {d}{dx}}e^{x}=e^{x}}
By the way, in Mathematics,
e
x
p
(
x
)
{\displaystyle exp(x)}
denotes
e
x
{\displaystyle e^{x}}
.
Fourier Series
The Fourier transform relates the function's time domain, shown in red, to the function's frequency domain, shown in blue. The component frequencies, spread across the frequency spectrum, are represented as peaks in the frequency domain.
Fourier Transform is to transform the function which has certain kinds of variables, such as time or spatial coordinate,
f
(
t
)
{\displaystyle f(t)}
for example, to the function which has variable of frequency.
f
^
(
ξ
)
=
∫
−
∞
∞
f
(
t
)
e
−
i
2
π
t
ξ
d
t
{\displaystyle {\hat {f}}(\xi )=\int _{-\infty }^{\infty }f(t)\ e^{-i2\pi t\xi }\,dt}
...(1)
This integral above is referred to as Fourier integral, while
f
^
(
ξ
)
{\displaystyle {\hat {f}}(\xi )}
is called Fourier transform of
f
(
t
)
{\displaystyle f(t)}
.
t
{\displaystyle t}
denotes "time".
ξ
{\displaystyle \xi }
denotes "frequency".
On the other hand, Inverse Fourier transform is defined as follows:
f
(
t
)
=
∫
−
∞
∞
f
^
(
ξ
)
e
i
2
π
t
ξ
d
ξ
{\displaystyle f(t)=\int _{-\infty }^{\infty }{\hat {f}}(\xi )\ e^{i2\pi t\xi }\,d\xi }
...(2)
In the textbooks of universities, the Fourier transform is usually introduced with the variable Angular frequency
ω
{\displaystyle \omega }
. In other word,
ξ
→
ω
=
2
π
ξ
{\displaystyle \xi \rightarrow \omega =2\pi \xi }
is substituted to (1) and (2) in the books. In that case, the Fourier transform is written in two different ways.
1.
f
^
(
ω
)
=
∫
−
∞
∞
f
(
t
)
e
−
i
ω
t
d
t
{\displaystyle {\hat {f}}(\omega )=\int _{-\infty }^{\infty }f(t)e^{-i\omega t}dt}
f
(
t
)
=
1
2
π
∫
−
∞
∞
f
^
(
t
)
e
i
ω
t
d
ω
{\displaystyle f(t)={\frac {1}{2\pi }}\int _{-\infty }^{\infty }{\hat {f}}(t)e^{i\omega t}d\omega }
2.
f
^
(
ω
)
=
1
2
π
∫
−
∞
∞
f
(
t
)
e
−
i
ω
t
d
t
{\displaystyle {\hat {f}}(\omega )={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }f(t)e^{-i\omega t}dt}
f
(
t
)
=
1
2
π
∫
−
∞
∞
f
^
(
t
)
e
i
ω
t
d
ω
{\displaystyle f(t)={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }{\hat {f}}(t)e^{i\omega t}d\omega }
Fourier Sine Series
The series below is called Fourier sine series .
f
(
x
)
=
∑
n
=
1
∞
b
n
sin
n
π
x
L
{\displaystyle f(x)=\sum _{n=1}^{\infty }b_{n}\sin {\frac {n\pi x}{L}}}
where
b
n
=
2
L
∫
0
L
f
(
x
)
sin
n
π
x
L
d
x
{\displaystyle b_{n}={\frac {2}{L}}\int _{0}^{L}f(x)\sin {\frac {n\pi x}{L}}dx}
Fourier Cosine Series
Fourier cosine series
edit
The series below is called Fourier cosine series .
f
(
x
)
=
a
0
2
+
∑
n
=
1
∞
a
n
cos
n
π
x
L
{\displaystyle f(x)={\frac {a_{0}}{2}}+\sum _{n=1}^{\infty }a_{n}\cos {\frac {n\pi x}{L}}}
where
a
n
=
2
L
∫
0
L
f
(
x
)
cos
n
π
x
L
d
x
{\displaystyle a_{n}={\frac {2}{L}}\int _{0}^{L}f(x)\cos {\frac {n\pi x}{L}}dx}
Let
f
(
x
)
=
(
−
∞
,
∞
)
{\displaystyle f(x)=(-\infty ,\infty )}
and
suppose
∫
−
∞
∞
|
f
(
t
)
|
d
t
≤
M
{\displaystyle \int _{-\infty }^{\infty }|f(t)|dt\leq M}
.
Then we have the functions below.
f
(
t
)
=
1
2
π
∫
−
∞
∞
f
^
(
ω
)
e
i
ω
t
d
ω
{\displaystyle f(t)={\frac {1}{2\pi }}\int _{-\infty }^{\infty }{\hat {f}}(\omega )e^{i\omega t}d\omega }
This function
f
(
t
)
{\displaystyle f(t)}
is referred to as Fourier integral .
f
^
(
ω
)
=
∫
−
∞
∞
f
(
t
)
e
−
i
ω
t
d
t
{\displaystyle {\hat {f}}(\omega )=\int _{-\infty }^{\infty }f(t)e^{-i\omega t}dt}
This function
f
^
(
ω
)
{\displaystyle {\hat {f}}(\omega )}
is referred to as fourier transform as we previously learned.
Parseval's Theorem
Bessel Functions
The equation below is called Bessel's differential equation.
x
2
d
2
y
d
x
2
+
x
d
y
d
x
+
(
x
2
−
n
2
)
y
=
0
{\displaystyle x^{2}{\frac {d^{2}y}{dx^{2}}}+x{\frac {dy}{dx}}+(x^{2}-n^{2})y=0}
The two distinctive solutions of Bessel's differential equation are either one of the two pairs: (1)Linear combination of Bessel function(also known as Bessel function of the first kind) and Neumann function(also known as Bessel function of the second kind) (2)Linear combination of Hankel function of the first kind and Hankel function of the second kind.
Bessel function (of the first kind) is denoted as
J
n
(
x
)
{\displaystyle \displaystyle J_{n}(x)}
. Bessel function is defined as follow:
J
n
(
x
)
=
x
n
2
n
Γ
(
1
−
n
)
(
1
−
x
2
2
(
2
n
+
2
)
+
x
4
2
⋅
4
(
2
n
+
2
)
(
2
n
+
4
)
−
⋯
)
{\displaystyle J_{n}(x)={\frac {x^{n}}{2^{n}\Gamma (1-n)}}(1-{\frac {x^{2}}{2(2n+2)}}+{\frac {x^{4}}{2\cdot 4(2n+2)(2n+4)}}-\cdots )}
=
∑
m
=
0
∞
(
−
1
)
m
m
!
Γ
(
m
+
n
+
1
)
(
x
2
)
2
m
+
n
{\displaystyle =\sum _{m=0}^{\infty }{\frac {(-1)^{m}}{m!\,\Gamma (m+n+1)}}{\left({\frac {x}{2}}\right)}^{2m+n}}
where
H
n
(
1
)
(
x
)
=
J
n
(
x
)
+
i
N
n
(
x
)
{\displaystyle H_{n}^{(1)}(x)=J_{n}(x)+iN_{n}(x)}
H
n
(
2
)
(
x
)
=
J
n
(
x
)
−
i
N
n
(
x
)
{\displaystyle H_{n}^{(2)}(x)=J_{n}(x)-iN_{n}(x)}
N
n
(
x
)
=
J
n
(
x
)
cos
(
n
π
)
−
J
−
n
(
x
)
sin
(
n
π
)
{\displaystyle N_{n}(x)={\frac {J_{n}(x)\cos(n\pi )-J_{-n}(x)}{\sin(n\pi )}}}
Γ(z ) is the gamma function.
i
{\displaystyle i}
is the imaginary unit.
N
n
(
x
)
{\displaystyle N_{n}(x)}
is the Neumann function(or Bessel function of the second kind).
H
n
(
x
)
{\displaystyle H_{n}(x)}
is the Hankel functions.
If n is an integer, the Bessel function of the first kind is an entire function.
The Laplace transform is an integral transform which is widely used in physics and engineering.
Laplace Transforms involve a technique to change an expression into another form that is easier to work with using an improper integral. We usually introduce Laplace Transforms in the context of differential equations, since we use them a lot to solve some differential equations that can't be solved using other standard techniques. However, Laplace Transforms require only improper integration techniques to use. So you may run across them in first year calculus.
Notation: The Laplace Transform is denoted as
L
{
f
(
t
)
}
{\displaystyle \displaystyle {\mathcal {L}}\left\{f(t)\right\}}
.
The Laplace transform is named after mathematician and astronomer Pierre-Simon Laplace.
Topics You Need to Understand For This Page
Improper Integrals
For a function
f
(
t
)
{\displaystyle f(t)}
, using Napier's constant
e
{\displaystyle e}
and a complex number
s
{\displaystyle s}
, the Laplace transform
F
(
s
)
{\displaystyle F(s)}
is defined as follows:
F
(
s
)
=
L
{
f
(
t
)
}
(
s
)
=
∫
0
∞
e
−
s
t
f
(
t
)
d
t
{\displaystyle F(s)={\mathcal {L}}\left\{f(t)\right\}(s)=\int _{0}^{\infty }e^{-st}f(t)\,dt}
The parameter
s
{\displaystyle s}
is a complex number.
s
=
σ
+
i
ω
,
{\displaystyle s=\sigma +i\omega ,\,}
with real numbers
σ
{\displaystyle \sigma }
and
ω
{\displaystyle \omega }
.
This
F
(
s
)
{\displaystyle F(s)}
is the Laplace transform of
f
(
t
)
{\displaystyle f(t)}
.
Here is what is going on.
Examples of Laplace transform
f
(
t
)
{\displaystyle f(t)}
F
(
s
)
=
L
{
f
(
t
)
}
{\displaystyle F(s)={\mathcal {L}}\{f(t)\}}
C
{\displaystyle C}
C
s
{\displaystyle {\frac {C}{s}}}
t
{\displaystyle t}
1
s
2
{\displaystyle {\frac {1}{s^{2}}}}
t
n
{\displaystyle t^{n}}
n
!
s
n
+
1
{\displaystyle {\frac {n!}{s^{n+1}}}}
t
n
−
1
(
n
−
1
)
!
{\displaystyle {\frac {t^{n-1}}{(n-1)!}}}
1
s
n
{\displaystyle {\frac {1}{s^{n}}}}
e
a
t
{\displaystyle e^{at}}
1
s
−
a
{\displaystyle {\frac {1}{s-a}}}
e
−
a
t
{\displaystyle e^{-at}}
1
s
+
a
{\displaystyle {\frac {1}{s+a}}}
c
o
s
ω
t
{\displaystyle {\rm {cos}}\ \omega t}
s
s
2
+
ω
2
{\displaystyle {\frac {s}{s^{2}+{\omega }^{2}}}}
s
i
n
ω
t
{\displaystyle {\rm {sin}}\ \omega t}
ω
s
2
+
ω
2
{\displaystyle {\frac {\omega }{s^{2}+{\omega }^{2}}}}
t
n
−
1
Γ
(
n
)
{\displaystyle {\frac {t^{n-1}}{\Gamma (n)}}}
1
s
n
{\displaystyle {\frac {1}{s^{n}}}}
(n>0)
δ
(
t
−
a
)
{\displaystyle \delta (t-a)}
e
−
a
s
{\displaystyle e^{-as}}
H
(
t
−
a
)
{\displaystyle H(t-a)}
e
−
a
s
s
{\displaystyle {\frac {e^{-as}}{s}}}
In the above table,
C
{\displaystyle C}
and
a
{\displaystyle a}
are constants
n
{\displaystyle n}
is a natural number
δ
(
t
−
a
)
{\displaystyle \delta (t-a)}
is the Delta function
H
(
t
−
a
)
{\displaystyle H(t-a)}
is the Heaviside function
ID
Function
Time domain
x
(
t
)
=
L
−
1
{
X
(
s
)
}
{\displaystyle x(t)={\mathcal {L}}^{-1}\left\{X(s)\right\}}
Laplace domain
X
(
s
)
=
L
{
x
(
t
)
}
{\displaystyle X(s)={\mathcal {L}}\left\{x(t)\right\}}
Region of convergence for causal systems
1
Ideal delay
δ
(
t
−
τ
)
{\displaystyle \delta (t-\tau )\ }
e
−
τ
s
{\displaystyle e^{-\tau s}\ }
1a
Unit impulse
δ
(
t
)
{\displaystyle \delta (t)\ }
1
{\displaystyle 1\ }
a
l
l
s
{\displaystyle \mathrm {all} \ s\,}
2
Delayed n th power with frequency shift
(
t
−
τ
)
n
n
!
e
−
α
(
t
−
τ
)
⋅
u
(
t
−
τ
)
{\displaystyle {\frac {(t-\tau )^{n}}{n!}}e^{-\alpha (t-\tau )}\cdot u(t-\tau )}
e
−
τ
s
(
s
+
α
)
n
+
1
{\displaystyle {\frac {e^{-\tau s}}{(s+\alpha )^{n+1}}}}
s
>
0
{\displaystyle s>0\,}
2a
n th Power
t
n
n
!
⋅
u
(
t
)
{\displaystyle {t^{n} \over n!}\cdot u(t)}
1
s
n
+
1
{\displaystyle {1 \over s^{n+1}}}
s
>
0
{\displaystyle s>0\,}
2a.1
q th Power
t
q
Γ
(
q
+
1
)
⋅
u
(
t
)
{\displaystyle {t^{q} \over \Gamma (q+1)}\cdot u(t)}
1
s
q
+
1
{\displaystyle {1 \over s^{q+1}}}
s
>
0
{\displaystyle s>0\,}
2a.2
Unit step
u
(
t
)
{\displaystyle u(t)\ }
1
s
{\displaystyle {1 \over s}}
s
>
0
{\displaystyle s>0\,}
2b
Delayed unit step
u
(
t
−
τ
)
{\displaystyle u(t-\tau )\ }
e
−
τ
s
s
{\displaystyle {e^{-\tau s} \over s}}
s
>
0
{\displaystyle s>0\,}
2c
Ramp
t
⋅
u
(
t
)
{\displaystyle t\cdot u(t)\ }
1
s
2
{\displaystyle {\frac {1}{s^{2}}}}
s
>
0
{\displaystyle s>0\,}
2d
n th Power with frequency shift
t
n
n
!
e
−
α
t
⋅
u
(
t
)
{\displaystyle {\frac {t^{n}}{n!}}e^{-\alpha t}\cdot u(t)}
1
(
s
+
α
)
n
+
1
{\displaystyle {\frac {1}{(s+\alpha )^{n+1}}}}
s
>
−
α
{\displaystyle s>-\alpha \,}
2d.1
Exponential decay
e
−
α
t
⋅
u
(
t
)
{\displaystyle e^{-\alpha t}\cdot u(t)\ }
1
s
+
α
{\displaystyle {1 \over s+\alpha }}
s
>
−
α
{\displaystyle s>-\alpha \ }
3
Exponential approach
(
1
−
e
−
α
t
)
⋅
u
(
t
)
{\displaystyle (1-e^{-\alpha t})\cdot u(t)\ }
α
s
(
s
+
α
)
{\displaystyle {\frac {\alpha }{s(s+\alpha )}}}
s
>
0
{\displaystyle s>0\ }
4
Sine
sin
(
ω
t
)
⋅
u
(
t
)
{\displaystyle \sin(\omega t)\cdot u(t)\ }
ω
s
2
+
ω
2
{\displaystyle {\omega \over s^{2}+\omega ^{2}}}
s
>
0
{\displaystyle s>0\ }
5
Cosine
cos
(
ω
t
)
⋅
u
(
t
)
{\displaystyle \cos(\omega t)\cdot u(t)\ }
s
s
2
+
ω
2
{\displaystyle {s \over s^{2}+\omega ^{2}}}
s
>
0
{\displaystyle s>0\ }
6
Hyperbolic sine
sinh
(
α
t
)
⋅
u
(
t
)
{\displaystyle \sinh(\alpha t)\cdot u(t)\ }
α
s
2
−
α
2
{\displaystyle {\alpha \over s^{2}-\alpha ^{2}}}
s
>
|
α
|
{\displaystyle s>|\alpha |\ }
7
Hyperbolic cosine
cosh
(
α
t
)
⋅
u
(
t
)
{\displaystyle \cosh(\alpha t)\cdot u(t)\ }
s
s
2
−
α
2
{\displaystyle {s \over s^{2}-\alpha ^{2}}}
s
>
|
α
|
{\displaystyle s>|\alpha |\ }
8
Exponentially-decaying sine
e
−
α
t
sin
(
ω
t
)
⋅
u
(
t
)
{\displaystyle e^{-\alpha t}\sin(\omega t)\cdot u(t)\ }
ω
(
s
+
α
)
2
+
ω
2
{\displaystyle {\omega \over (s+\alpha )^{2}+\omega ^{2}}}
s
>
−
α
{\displaystyle s>-\alpha \ }
9
Exponentially-decaying cosine
e
−
α
t
cos
(
ω
t
)
⋅
u
(
t
)
{\displaystyle e^{-\alpha t}\cos(\omega t)\cdot u(t)\ }
s
+
α
(
s
+
α
)
2
+
ω
2
{\displaystyle {s+\alpha \over (s+\alpha )^{2}+\omega ^{2}}}
s
>
−
α
{\displaystyle s>-\alpha \ }
10
n th Root
t
n
⋅
u
(
t
)
{\displaystyle {\sqrt[{n}]{t}}\cdot u(t)}
s
−
(
n
+
1
)
/
n
⋅
Γ
(
1
+
1
n
)
{\displaystyle s^{-(n+1)/n}\cdot \Gamma \left(1+{\frac {1}{n}}\right)}
s
>
0
{\displaystyle s>0\,}
11
Natural logarithm
ln
(
t
t
0
)
⋅
u
(
t
)
{\displaystyle \ln \left({t \over t_{0}}\right)\cdot u(t)}
−
t
0
s
[
ln
(
t
0
s
)
+
γ
]
{\displaystyle -{t_{0} \over s}\ [\ \ln(t_{0}s)+\gamma \ ]}
s
>
0
{\displaystyle s>0\,}
12
Bessel function of the first kind, of order n
J
n
(
ω
t
)
⋅
u
(
t
)
{\displaystyle J_{n}(\omega t)\cdot u(t)}
ω
n
(
s
+
s
2
+
ω
2
)
−
n
s
2
+
ω
2
{\displaystyle {\frac {\omega ^{n}\left(s+{\sqrt {s^{2}+\omega ^{2}}}\right)^{-n}}{\sqrt {s^{2}+\omega ^{2}}}}}
s
>
0
{\displaystyle s>0\,}
(
n
>
−
1
)
{\displaystyle (n>-1)\,}
13
Modified Bessel function of the first kind, of order n
I
n
(
ω
t
)
⋅
u
(
t
)
{\displaystyle I_{n}(\omega t)\cdot u(t)}
ω
n
(
s
+
s
2
−
ω
2
)
−
n
s
2
−
ω
2
{\displaystyle {\frac {\omega ^{n}\left(s+{\sqrt {s^{2}-\omega ^{2}}}\right)^{-n}}{\sqrt {s^{2}-\omega ^{2}}}}}
s
>
|
ω
|
{\displaystyle s>|\omega |\,}
14
Bessel function of the second kind, of order 0
Y
0
(
α
t
)
⋅
u
(
t
)
{\displaystyle Y_{0}(\alpha t)\cdot u(t)}
15
Modified Bessel function of the second kind, of order 0
K
0
(
α
t
)
⋅
u
(
t
)
{\displaystyle K_{0}(\alpha t)\cdot u(t)}
16
Error function
e
r
f
(
t
)
⋅
u
(
t
)
{\displaystyle \mathrm {erf} (t)\cdot u(t)}
e
s
2
/
4
erfc
(
s
/
2
)
s
{\displaystyle {e^{s^{2}/4}\operatorname {erfc} \left(s/2\right) \over s}}
s
>
0
{\displaystyle s>0\,}
17
Constant
C
{\displaystyle C}
C
s
{\displaystyle \displaystyle {\frac {C}{s}}}
Explanatory notes:
u
(
t
)
{\displaystyle u(t)\,}
represents the Heaviside step function.
δ
(
t
)
{\displaystyle \delta (t)\,}
represents the Dirac delta function.
Γ
(
z
)
{\displaystyle \Gamma (z)\,}
represents the Gamma function.
γ
{\displaystyle \gamma \,}
is the Euler-Mascheroni constant.
t
{\displaystyle t\,}
, a real number, typically represents time , although it can represent any independent dimension.
s
{\displaystyle s\,}
is the complex angular frequency.
α
{\displaystyle \alpha \,}
,
β
{\displaystyle \beta \,}
,
τ
{\displaystyle \tau \,}
,
ω
{\displaystyle \omega \,}
and
C
{\displaystyle C}
are real numbers.
n
{\displaystyle n\,}
is an integer.
A causal system is a system where the impulse response h (t ) is zero for all time t prior to t = 0. In general, the ROC for causal systems is not the same as the ROC for anticausal systems. See also causality.
1. Calculate
L
{
C
}
{\displaystyle {\mathcal {L}}\{C\}}
(where
C
{\displaystyle C}
is a constant) using the integral definition.
∫
0
∞
e
−
s
t
C
d
t
=
C
∫
0
∞
e
−
s
t
d
t
=
C
lim
b
→
∞
∫
0
b
e
−
s
t
d
t
=
C
lim
b
→
∞
e
−
s
t
−
s
|
t
=
0
t
=
b
=
−
C
s
[
lim
b
→
∞
e
−
b
s
−
e
0
]
=
−
C
s
[
0
−
1
]
=
C
s
{\displaystyle {\begin{array}{rcl}\displaystyle {\int _{0}^{\infty }e^{-st}C\,dt}&=&C\displaystyle {\int _{0}^{\infty }e^{-st}\,dt}\\&=&\displaystyle {C\lim _{b\to \infty }{\int _{0}^{b}e^{-st}\,dt}}\\&=&\displaystyle {\left.C\lim _{b\to \infty }{\frac {e^{-st}}{-s}}\right|_{t=0}^{t=b}}\\&=&\displaystyle {-{\frac {C}{s}}\left[\lim _{b\to \infty }{e^{-bs}}-e^{0}\right]}\\&=&\displaystyle {-{\frac {C}{s}}[0-1]}\\&=&\displaystyle {\frac {C}{s}}\end{array}}}
∴
L
{
C
}
=
C
s
{\displaystyle \therefore \displaystyle {\mathcal {L}}\left\{C\right\}={\frac {C}{s}}}
2. Calculate
L
{
e
−
a
t
}
{\displaystyle {\mathcal {L}}\{e^{-at}\}}
using the integral definition.
∫
0
∞
e
−
s
t
⋅
e
−
a
t
d
t
=
∫
0
∞
e
−
(
s
+
a
)
t
d
t
=
lim
b
→
∞
∫
0
b
e
−
(
s
+
a
)
t
d
t
=
lim
b
→
∞
[
−
e
−
(
s
+
a
)
t
s
+
a
]
t
=
0
t
=
b
=
lim
b
→
∞
[
−
e
−
(
s
+
a
)
b
s
+
a
−
−
e
−
(
s
+
a
)
0
s
+
a
]
=
1
s
+
a
{\displaystyle {\begin{array}{rcl}\displaystyle \int _{0}^{\infty }e^{-st}\cdot e^{-at}\,dt&=&\displaystyle \int _{0}^{\infty }e^{-(s+a)t}\,dt\\&=&\displaystyle \lim _{b\to \infty }{\displaystyle \int _{0}^{b}e^{-(s+a)t}\,dt}\\&=&\displaystyle \lim _{b\to \infty }\left[\displaystyle {\frac {-e^{-(s+a)t}}{s+a}}\right]_{t=0}^{t=b}\\&=&\displaystyle \lim _{b\to \infty }\left[\displaystyle {\frac {-e^{-(s+a)b}}{s+a}}-\displaystyle {\frac {-e^{-(s+a)0}}{s+a}}\right]\\&=&\displaystyle {\frac {1}{s+a}}\end{array}}}
∴
L
{
e
−
a
t
}
=
1
s
+
a
{\displaystyle \therefore {\mathcal {L}}\{e^{-at}\}=\displaystyle {\frac {1}{s+a}}}
Complex Integration
The Basics
The Basics of linear algebra
edit
A
=
[
a
11
a
12
a
12
a
14
a
21
a
22
a
23
a
24
a
31
a
32
a
33
a
34
]
.
{\displaystyle \mathbf {A} ={\begin{bmatrix}a_{11}&a_{12}&a_{12}&a_{14}\\a_{21}&a_{22}&a_{23}&a_{24}\\a_{31}&a_{32}&a_{33}&a_{34}\\\end{bmatrix}}.}
A matrix is composed of a rectangular array of numbers arranged in rows and columns . The horizontal lines are called rows and the vertical lines are called columns. The individual items in a matrix are called elements . The element in the i-th row and the j-th column of a matrix is referred to as the i,j, (i,j), or (i,j)th element of the matrix. To specify the size of a matrix, a matrix with m rows and n columns is called an m-by-n matrix, and m and n are called its dimensions.
(1)
[
5
7
3
1
2
9
]
+
[
4
0
5
8
3
0
]
=
{\displaystyle {\begin{bmatrix}5&7&3\\1&2&9\end{bmatrix}}+{\begin{bmatrix}4&0&5\\8&3&0\end{bmatrix}}=}
(2)
4
[
−
1
0
−
5
7
9
−
6
]
=
{\displaystyle 4{\begin{bmatrix}-1&0&-5\\7&9&-6\end{bmatrix}}=}
(3)
[
−
2
5
7
0
0
9
]
T
=
{\displaystyle {\begin{bmatrix}-2&5&7\\0&0&9\end{bmatrix}}^{\mathrm {T} }=}
Matrix multiplication
edit
Multiplication of two matrices is defined only if the number of columns of the left matrix is the same as the number of rows of the right matrix. If A is an m-by-n matrix and B is an n-by-p matrix, then their matrix product AB is the m-by-p matrix whose entries are given by dot product of the corresponding row of A and the corresponding column of B[ 2]
[
A
B
]
i
,
j
=
A
i
,
1
B
1
,
j
+
A
i
,
2
B
2
,
j
+
⋯
+
A
i
,
n
B
n
,
j
=
∑
r
=
1
n
A
i
,
r
B
r
,
j
{\displaystyle [\mathbf {AB} ]_{i,j}=A_{i,1}B_{1,j}+A_{i,2}B_{2,j}+\cdots +A_{i,n}B_{n,j}=\sum _{r=1}^{n}A_{i,r}B_{r,j}}
[ 3]
Schematic depiction of the matrix product AB of two matrices A and B .
[
−
2
0
3
2
]
[
1
2
3
−
1
]
{\displaystyle {\begin{bmatrix}-2&0\\3&2\end{bmatrix}}{\begin{bmatrix}1&2\\3&-1\end{bmatrix}}}
=
[
−
2
+
0
−
4
+
0
3
+
6
6
+
(
−
2
)
]
{\displaystyle ={\begin{bmatrix}-2+0&-4+0\\3+6&6+(-2)\end{bmatrix}}}
=
[
−
2
−
4
9
4
]
{\displaystyle ={\begin{bmatrix}-2&-4\\9&4\end{bmatrix}}}
(1)
[
1
0
2
2
]
[
4
2
]
=
{\displaystyle {\begin{bmatrix}1&0\\2&2\end{bmatrix}}{\begin{bmatrix}4\\2\end{bmatrix}}=}
(2)
[
1
2
2
3
]
[
2
3
1
4
]
=
{\displaystyle {\begin{bmatrix}1&2\\2&3\end{bmatrix}}{\begin{bmatrix}2&3\\1&4\end{bmatrix}}=}
A row vector is a 1 × m matrix, while a column vector is a m × 1 matrix.
Suppose A is row vector and B is column vector, then the dot product is defined as follows;
A
⋅
B
=
|
A
|
|
B
|
c
o
s
θ
{\displaystyle A\cdot B=|A||B|cos\theta }
or
A
⋅
B
=
(
a
1
a
2
⋯
a
n
)
(
b
1
b
2
⋮
b
n
)
=
a
1
b
1
+
a
2
b
2
+
⋯
+
a
n
b
n
=
∑
i
=
1
n
a
i
b
i
{\displaystyle \mathbf {A} \cdot \mathbf {B} ={\begin{pmatrix}a_{1}&a_{2}&\cdots &a_{n}\end{pmatrix}}{\begin{pmatrix}b_{1}\\b_{2}\\\vdots \\b_{n}\end{pmatrix}}=a_{1}b_{1}+a_{2}b_{2}+\cdots +a_{n}b_{n}=\sum _{i=1}^{n}a_{i}b_{i}}
Suppose
A
=
(
a
1
a
2
a
3
)
{\displaystyle \mathbf {A} ={\begin{pmatrix}a_{1}&a_{2}&a_{3}\end{pmatrix}}}
and
B
=
(
b
1
b
2
b
3
)
{\displaystyle \mathbf {B} ={\begin{pmatrix}b_{1}\\b_{2}\\b_{3}\end{pmatrix}}}
The dot product is
A
⋅
B
=
(
a
1
a
2
a
3
)
(
b
1
b
2
b
3
)
=
a
1
b
1
+
a
2
b
2
+
a
3
b
3
{\displaystyle \mathbf {A} \cdot \mathbf {B} ={\begin{pmatrix}a_{1}&a_{2}&a_{3}\end{pmatrix}}{\begin{pmatrix}b_{1}\\b_{2}\\b_{3}\end{pmatrix}}=a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}}
Suppose
A
=
(
2
1
3
)
{\displaystyle \mathbf {A} ={\begin{pmatrix}2\\1\\3\end{pmatrix}}}
and
B
=
(
7
5
4
)
{\displaystyle \mathbf {B} ={\begin{pmatrix}7\\5\\4\end{pmatrix}}}
A
⋅
B
=
(
2
1
3
)
(
7
5
4
)
{\displaystyle \mathbf {A} \cdot \mathbf {B} ={\begin{pmatrix}2&1&3\end{pmatrix}}{\begin{pmatrix}7\\5\\4\end{pmatrix}}}
=
2
⋅
7
+
1
⋅
5
+
3
⋅
4
{\displaystyle =2\cdot 7+1\cdot 5+3\cdot 4}
=
14
+
5
+
12
{\displaystyle =14+5+12}
=
31
{\displaystyle =31}
(1)
A
=
(
3
2
5
)
{\displaystyle \mathbf {A} ={\begin{pmatrix}3\\2\\5\end{pmatrix}}}
and
B
=
(
1
4
3
)
{\displaystyle \mathbf {B} ={\begin{pmatrix}1\\4\\3\end{pmatrix}}}
A
⋅
B
=
{\displaystyle \mathbf {A} \cdot \mathbf {B} =}
(2)
A
=
(
1
0
3
)
{\displaystyle \mathbf {A} ={\begin{pmatrix}1\\0\\3\end{pmatrix}}}
and
B
=
(
6
9
2
)
{\displaystyle \mathbf {B} ={\begin{pmatrix}6\\9\\2\end{pmatrix}}}
A
⋅
B
=
{\displaystyle \mathbf {A} \cdot \mathbf {B} =}
Cross product is defined as follows:
A
×
B
=
|
A
|
|
B
|
s
i
n
θ
{\displaystyle A\times B=|A||B|sin\theta }
Or, using detriment,
A
×
B
=
|
e
x
e
y
e
z
a
x
a
y
a
z
b
x
b
y
b
z
|
=
(
a
y
b
z
−
a
z
b
y
,
a
z
b
x
−
a
x
b
z
,
a
x
b
y
−
a
y
b
x
)
{\displaystyle \mathbf {A\times B} ={\begin{vmatrix}e_{x}&e_{y}&e_{z}\\a_{x}&a_{y}&a_{z}\\b_{x}&b_{y}&b_{z}\\\end{vmatrix}}=(a_{y}b_{z}-a_{z}b_{y},a_{z}b_{x}-a_{x}b_{z},a_{x}b_{y}-a_{y}b_{x})}
where
e
{\displaystyle e}
is unit vector.
Lagrange Equations
d
d
t
(
∂
L
∂
x
˙
)
−
∂
L
∂
x
=
0
{\displaystyle {\frac {d}{dt}}\left({\frac {\partial L}{\partial {\dot {x}}}}\right)-{\frac {\partial L}{\partial x}}=0}
where
x
˙
=
d
x
d
t
{\displaystyle {\dot {x}}={\frac {dx}{dt}}}
The equation above is called Lagrange Equation .
Let the kinetic energy of the point mass be
T
{\displaystyle T}
and the potential energy be
U
{\displaystyle U}
.
T
−
U
{\displaystyle T-U}
is called Lagrangian . Then the kinetic energy is expressed by
T
=
1
2
m
x
˙
2
+
1
2
m
y
˙
2
{\displaystyle T={\frac {1}{2}}m{\dot {x}}^{2}+{\frac {1}{2}}m{\dot {y}}^{2}}
=
m
2
(
x
˙
2
+
y
˙
2
)
{\displaystyle ={\frac {m}{2}}({\dot {x}}^{2}+{\dot {y}}^{2})}
Thus
T
=
T
(
x
˙
,
y
˙
)
{\displaystyle T=T({\dot {x}},{\dot {y}})}
U
=
U
(
x
,
y
)
{\displaystyle U=U(x,y)}
Hence the Lagrangian
L
{\displaystyle L}
is
L
=
T
−
U
{\displaystyle L=T-U}
=
T
(
x
˙
,
y
˙
)
−
U
(
x
,
y
)
{\displaystyle =T({\dot {x}},{\dot {y}})-U(x,y)}
=
m
2
(
x
˙
2
+
y
˙
2
)
−
U
(
x
,
y
)
{\displaystyle ={\frac {m}{2}}({\dot {x}}^{2}+{\dot {y}}^{2})-U(x,y)}
Therefore
T
{\displaystyle T}
relies on only
x
˙
{\displaystyle {\dot {x}}}
and
y
˙
{\displaystyle {\dot {y}}}
.
U
{\displaystyle U}
relies on only
x
{\displaystyle x}
and
y
{\displaystyle y}
. Thus
∂
L
∂
x
˙
=
∂
T
∂
x
˙
=
m
x
˙
{\displaystyle {\frac {\partial L}{\partial {\dot {x}}}}={\frac {\partial T}{\partial {\dot {x}}}}=m{\dot {x}}}
∂
L
∂
y
˙
=
∂
T
∂
y
˙
=
m
y
˙
{\displaystyle {\frac {\partial L}{\partial {\dot {y}}}}={\frac {\partial T}{\partial {\dot {y}}}}=m{\dot {y}}}
In the same way, we have
∂
L
∂
x
=
−
∂
U
∂
x
{\displaystyle {\frac {\partial L}{\partial x}}=-{\frac {\partial U}{\partial x}}}
∂
L
∂
y
=
−
∂
U
∂
y
{\displaystyle {\frac {\partial L}{\partial y}}=-{\frac {\partial U}{\partial y}}}
The State Equation