Algorithm Implementation/Graphs/Maximum flow/Edmonds-Karp
(Redirected from Algorithm implementation/Graphs/Maximum flow/Edmonds-Karp)
Java
edit/*
* Java Implementation of Edmonds-Karp Algorithm *
* By: Pedro Contipelli *
Input Format: (Sample Input)
N , E | (N total nodes , E total edges) | 4 5
u1 , v1 , c1 | | 0 1 1000
u2 , v2 , c2 | Each line u , v , c represents | 1 2 1
u3 , v3 , c3 | an edge in the graph from node | 0 2 1000
... | u to node v with capacity C | 1 3 1000
uE , vE , cE | | 2 3 1000
Nodes 0 and N-1 are assumed to be the source and sink (respectively).
*/
import java.util.*;
public class EdmondsKarp {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int nodes = scan.nextInt();
int edges = scan.nextInt();
int source = 0;
int sink = nodes - 1;
Node[] graph = new Node[nodes];
// Initialize each node
for (int i = 0; i < nodes; i++)
graph[i] = new Node();
// Initialize each edge
for (int i = 0; i < edges; i++) {
int u = scan.nextInt();
int v = scan.nextInt();
int c = scan.nextInt();
// Note edge "b" is not actually in the input graph
// It is a construct that allows us to solve the problem
Edge a = new Edge(u , v , 0 , c);
Edge b = new Edge(v , u , 0 , 0);
// Set pointer from each edge "a" to
// its reverse edge "b" and vice versa
a.setReverse(b);
b.setReverse(a);
graph[u].edges.add(a);
graph[v].edges.add(b);
}
int maxFlow = 0;
while (true) {
// Parent array used for storing path
// (parent[i] stores edge used to get to node i)
Edge[] parent = new Edge[nodes];
ArrayList<Node> q = new ArrayList<>();
q.add(graph[source]);
// BFS finding shortest augmenting path
while (!q.isEmpty()) {
Node curr = q.remove(0);
// Checks that edge has not yet been visited, and it doesn't
// point to the source, and it is possible to send flow through it.
for (Edge e : curr.edges)
if (parent[e.v] == null && e.v != source && e.capacity > e.flow) {
parent[e.v] = e;
q.add(graph[e.v]);
}
}
// If sink was NOT reached, no augmenting path was found.
// Algorithm terminates and prints out max flow.
if (parent[sink] == null)
break;
// If sink WAS reached, we will push more flow through the path
int pushFlow = Integer.MAX_VALUE;
// Finds maximum flow that can be pushed through given path
// by finding the minimum residual flow of every edge in the path
for (Edge e = parent[sink]; e != null; e = parent[e.u])
pushFlow = Math.min(pushFlow , e.capacity - e.flow);
// Adds to flow values and subtracts from reverse flow values in path
for (Edge e = parent[sink]; e != null; e = parent[e.u]) {
e.flow += pushFlow;
e.reverse.flow -= pushFlow;
}
maxFlow += pushFlow;
}
System.out.println("Max Flow: " + maxFlow);
scan.close();
}
}
// No explicit constructor is necessary :P
class Node {
// List of edges also includes reverse edges that
// are not in original given graph (for push-back flow)
ArrayList<Edge> edges = new ArrayList<>();
}
class Edge {
int u , v , flow , capacity;
Edge reverse;
public Edge(int u , int v , int flow , int capacity) {
this.u = u;
this.v = v;
this.flow = flow;
this.capacity = capacity;
}
public void setReverse(Edge e) {
reverse = e;
}
}
MATLAB
editThis code is the direct transcription in MATLAB language of the pseudocode shown in the Wikipedia article of the Edmonds-Karp algorithm.
function [f,F]=EdmondsKarp(C,E,s,t)
%Initial flow is 0
f=0;
imax=size(C,1);
F=zeros(imax);
while(1)
[m,P]=BreadthFirstSearch(C,E,s,t,F);
%The end is reached when the capacity of the returned path is 0
if(m==0)
break;
end
%The total flow is increased by m
f=f+m;
%The flow for every edge on the path is increased by m
v=t;
while(v~=s)
u=P(v);
F(u,v)=F(u,v)+m;
F(v,u)=F(v,u)-m;
v=u;
end
end
end
function [M,P]=BreadthFirstSearch(C,E,s,t,F)
n=size(C,1);
P=zeros(n,1);
M=zeros(n);
M(s)=Inf;
for u=1:n
P(u)=-1;
end
P(s)=-2;
%Q is used as a queue
Q=[];
Q=vertcat(Q,s);
while(isempty(Q)==0)
u=Q(1);
Q(1)='';
neighbors=E{u};
for i=1:length(neighbors)
v=neighbors(i);
if(C(u,v)-F(u,v)>0 && P(v)==-1)
P(v)=u;
M(v)=min(M(u),C(u,v)-F(u,v));
if(v~=t)
Q(length(Q)+1)=v;
else
M=M(t);
return;
end
end
end
end
M=0;
end