Abstract Algebra/Group tables
The Group of Order 2
editHere is the group table for the only group of order 2
+ | 0 | 1 |
---|---|---|
0 | 0 | 1 |
1 | 1 | 0 |
The Group of Order 3
editHere is the group table for the only group of order 3
+ | 0 | 1 | 2 |
---|---|---|---|
0 | 0 | 1 | 2 |
1 | 1 | 2 | 0 |
2 | 2 | 0 | 1 |
The Groups of Order 4
editHere are the group tables for the only groups of order 4
The cyclic group of order 4
editTwo ways of documenting the same group structure | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||
To see more clearly that these two tables actually have the same | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
group structure you'll need to rename the entries | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0 | maps to | 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 | maps to | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 | maps to | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 | maps to | 3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 + 2 = 3 | maps to | 2 × 4 = 3 |
Notice that regardless of the way we notate this group, there is an element that generates the whole group.
The other group of order 4
editFor the following example, image the number 0 through 3 written in binary, then add the digits without any carrying. For example,
2 + 3 10 + 11 01 1
Since binary addition (without carry) is isomorphic to we view this group as being two copies of joined together. That's where the name comes from.
+ | 0 | 1 | 2 | 3 |
---|---|---|---|---|
0 | 0 | 1 | 2 | 3 |
1 | 1 | 0 | 3 | 2 |
2 | 2 | 3 | 0 | 1 |
3 | 3 | 2 | 1 | 0 |
The Group of Order 5
edit+ | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
0 | 0 | 1 | 2 | 3 | 4 |
1 | 1 | 2 | 3 | 4 | 0 |
2 | 2 | 3 | 4 | 0 | 1 |
3 | 3 | 4 | 0 | 1 | 2 |
4 | 4 | 0 | 1 | 2 | 3 |
Other small groups
editA list of groups of order 1 through 31 compiled by John Pedersen, Dept of Mathematics, University of South Florida [1]
A list of groups names and some examples of group graphs from Wolfram, makers of Mathematica. [2]