Home
Random
Log in
Settings
Donate Now
If Wikipedia is useful to you, please give today.
About Wikibooks
Disclaimers
Search
Abstract Algebra/Group Theory/Subgroup/Normal Subgroup/Definition of a Normal Subgroup
Language
Watch
Edit
<
Abstract Algebra
|
Group Theory
|
Subgroup
A
normal subgroup
is a
subgroup
H of a group G that satisfies
∀
g
∈
G
:
g
H
g
−
1
=
H
{\displaystyle \forall \;g\in G:gHg^{-1}=H}
where
g
H
g
−
1
=
{
g
∗
h
∗
g
−
1
|
h
∈
H
}
{\displaystyle gHg^{-1}=\lbrace g\ast h\ast g^{-1}|h\in H\rbrace }
Equivalent Definition
edit
∀
g
∈
G
,
h
∈
H
:
g
∗
h
∗
g
−
1
∈
H
{\displaystyle \forall \;g\in G,h\in H:g\ast h\ast g^{-1}\in H}
Proof
edit
g
H
g
−
1
⊆
H
{\displaystyle gHg^{-1}\subseteq H}
by this definition
H
⊆
g
H
g
−
1
{\displaystyle H\subseteq gHg^{-1}}
0. Choose
g
∈
G
,
x
∈
H
{\displaystyle g\in G,x\in H}
1.
g
−
1
∈
G
{\displaystyle g^{-1}\in G}
2.
g
−
1
∗
x
∗
[
g
−
1
]
−
1
∈
H
{\displaystyle g^{-1}\ast x\ast [g^{-1}]^{-1}\in H}
by this definition
3.
g
∗
(
g
−
1
∗
x
∗
[
g
−
1
]
−
1
)
∗
g
−
1
∈
g
H
g
−
1
{\displaystyle g\ast (g^{-1}\ast x\ast [g^{-1}]^{-1})\ast g^{-1}\in gHg^{-1}}
4.
h
∈
g
H
g
−
1
{\displaystyle h\in gHg^{-1}}