Home
Random
Log in
Settings
Donations
About Wikibooks
Disclaimers
Search
Abstract Algebra/Group Theory/Subgroup/Cyclic Subgroup/Definition of a Cyclic Subgroup
Language
Watch
Edit
<
Abstract Algebra
|
Group Theory
|
Subgroup
Let G be a Group. Let
g
be an element of G.
The
Cyclic Subgroup
generated
by
g
is:
∀
g
∈
G
:
⟨
g
⟩
=
{
g
n
|
n
∈
Z
}
{\displaystyle \forall \;g\in G:\langle g\rangle =\lbrace g^{n}\;|\;n\in \mathbb {Z} \rbrace }
where
g
n
=
{
g
∗
g
⋯
∗
g
⏟
n
,
n
∈
Z
,
n
≥
0
g
−
1
∗
g
−
1
⋯
∗
g
−
1
⏟
−
n
,
n
∈
Z
,
n
<
0
{\displaystyle g^{n}={\begin{cases}\underbrace {g\ast g\cdots \ast g} _{n},&n\in \mathbb {Z} ,n\geq 0\\\underbrace {g^{-1}\ast g^{-1}\cdots \ast g^{-1}} _{-n},&n\in \mathbb {Z} ,n<0\end{cases}}}
By induction, we have:
∀
g
∈
G
:
∀
n
,
m
∈
Z
:
g
m
+
n
=
g
m
∗
g
n
and
g
m
n
=
[
g
m
]
n
{\displaystyle \forall g\in G:\forall n,m\in \mathbb {Z} :g^{m+n}=g^{m}\ast g^{n}{\text{ and }}g^{mn}=[g^{m}]^{n}}