Abstract Algebra/Group Theory/Homomorphism/Homomorphism Maps Identity to Identity

Theorem

edit

Let f be a homomorphism from group G to group K.

Let eG and eK be identities of G and K.

f(eG) = eK

Proof

edit
0.     f maps to K
1.     inverse in K
.
2.     f is a homomorphism
3.     identity eG
.
4.     1.
.
5.     identity eK, definition of inverse
6.     identity eK