Fractals/Iterations in the complex plane/construct

How to construct a map with desired properities ?

Shape edit

Shape of

  • Julia set
  • critical orbit
  • external rays landind on the repelling cycle ( spirals)

Relation between shape types and dynamics:

  • n-th arm spiral: attracting or repelling n-periodic orbit ( cycle)
  • closed curve: Siegel disc ( rotation)
  • n-th arm star = period n parabolic root


Modelling or shaping edit

Usually one should controll 2 parameters:

  • fixed point
  • period p orbit


See

Conversions and evolutions edit

Examples edit

roots edit

The fundamental theorem of algebra states that every non-zero, single-variable, degree n polynomial with complex coefficients has, counted with multiplicity, exactly n complex roots[5][6]


The factor theorem[7] states that a polynomial   has a factor   if and only if   (i.e.   is a root of multiplicity[8] m)

Examples

The polynomial[9]

  
 
 
 
Graph of the polynomial y = x^3 + 2*x^2 - 7*x + 4 with its roots (zeros) -4 and 1 marked.

The polynomial

  
 

has roots:

  • 1 of multiplicity 2
  • -4 of multiplicity 1

rboyce1000 edit

p(z) = z^4 + O(z^2), where the four roots of p(z) are:

  • one fixed at the origin,
  • the remaining three forming the vertices of an equilateral triangle centered at the origin and rotating.

create polynomial with desired properities

    • f(z) = z*g(z) with root at origin
    • g(z) is a 3-rd root of unity =  

f(z) = z(z^2+z+1)


One can check it with Maxima CAS

(%i1) solve([z*(z^2+z+1)=0],[z]);
                      sqrt(3) %i + 1      sqrt(3) %i - 1
(%o1)          [z = - --------------, z = --------------, z = 0]
                            2                   2
(%i2) 

to rotate it around origin let's change 1 with :  wher t is a proper fraction in turns


 

See : Vector_field short videos by boyce1000

one parameter edit

System of 2 equations:

 

where:

  •   is a rational function with one parameter c
  •   is the  -fold composition of   with itself
  •   is a cyclic point ( point of limit cycle)
  • p is a period of the cycle
  •   is a multiplier[10] ( complex number)
  •   is a stability of the cycle ( Real number )

Input :

  • function  
  • p ( integer)
  • r ( real number)
  •   ( real number or rational number)

Unknowns ( solutions or output):

  • parameter c ( complex number)
  • periodic point   ( complex number)

Maxima CAS program:

/*

batch("m.mac");

*/

display2d:false$
kill(all)$
ratprint:false$

/* complex quadratic polynomial */
f(z,c):= z*z+c $

/* iterated function */
F(z, c, n) :=
       if n=1 then f(z,c)
        else f(F(z, c, n-1),c)$
        
        
        
/*  multiplier = first deric=vative */        
m(z,c,p):= diff(F(z,c,p),z,1)$

l(r,t) := float(rectform(r*exp(2*%pi*t*%i)))$

/* input */

p:5$
r:1.0$
t:0$

/* system of equations */
e1: F(z,c,p)=z;
e2: m(z,c,p)=l(r,t);

/* 
output = solutions = 2 complex number: c, z 
*/

s:solve([e1,e2])$
s:map('float,s)$
s:map('rectform,s);

Example output:

For :

  • p = 3
  • r=1.0
  • t=0.0
[
[z = 0.5,c = 0.25],
[z = (-0.4330127018922193*%i)-0.25,c = (-0.6495190528383289*%i)-0.125],
[z = 0.4330127018922193*%i-0.25,c = 0.6495190528383289*%i-0.125],
[z = -0.05495813133539004,c = -1.75],
[z = 1.301937809824245,c = -1.75],
[z = -1.746979634104245,c = -1.75]
]

For :

  • p = 5
  • r=1.0
  • t=0.0
[
[z = 0.5,c = 0.25],
[z = 0.4755282581475767*%i+0.1545084971874737,c = 0.3285819450744551*%i+0.3567627457812099],
[z = 0.1545084971874737-0.4755282581475767*%i, c = 0.3567627457812106-0.3285819450744586*%i],
[z = 0.2938926261462365*%i-0.4045084971874737, c = 0.5316567552200239*%i-0.4817627457812153],
[z = (-0.2938926261462365*%i)-0.4045084971874737, c = (-0.5316567552199369*%i)-0.481762745781224],
[z = -0.003102011282477321,c = -1.985409652076318],
[z = 0.0109289978340113,c = -1.860587002096436],
[z = 8.008393221517376E-4*%i-0.01213161194929343, c = 1.100298437397382*%i-0.1978729466687337],
[z = (-8.008393221517376E-4*%i)-0.01213161194929343, c = (-1.100298437397305*%i)-0.1978729466687667],
        [z = 0.02151217276434695*%i-0.005267866463337371, c = 0.3797412022535638*%i-1.256801993945385],
        [z = (-0.02151217276434695*%i)-0.005267866463337371, c = (-0.3797412022517599*%i)-1.256801993944077],
        [z = 0.02591758988716001*%i+0.0096648625988135, c = 0.9868115621249533*%i-0.04506136597934137],
        [z = 0.0096648625988135-0.02591758988716001*%i, c = (-0.9868115621250132*%i)-0.04506136597930513],
        [z = -0.02506558296814108,c = -1.624396967608546],
        [z = 0.02532354987824971*%i-0.0286751769590709, c = 0.6415066667139064*%i+0.3599331333357185],
        [z = (-0.02532354987824971*%i)-0.0286751769590709,
         c = 0.3599331333357186-0.6415066667139071*%i], [z = 0.7018214526647177,c = -1.860587002096436],
        [z = 0.5745382937725365*%i+0.1798116252110209, c = (-0.379741202251533*%i)-1.25680199394442],
        [z = 0.1798116252110209-0.5745382937725365*%i, c = 0.3797412022514344*%i-1.256801993944486],
        [z = -0.5997918293000261,c = -1.624396967608546],
        [z = 0.6400543521659254*%i+0.3601141169309163, c = 0.6415066667138928*%i+0.3599331333356947],
        [z = 0.3601141169309163-0.6400543521659254*%i, c = 0.3599331333356951-0.6415066667138929*%i],
        [z = 0.747361547631752*%i+0.4122389750905872, c = 0.3599331333377524-0.6415066667118048*%i],
        [z = 0.4122389750905872-0.747361547631752*%i,c = 0.6415066667118131*%i+0.3599331333377574],
        [z = -1.264646754738656,c = -1.624396967608546],
        [z = 0.838427461519175*%i+0.1867295812979602,c = (-0.9868115621248*%i)-0.04506136597962632],
        [z = 0.1867295812979602-0.838427461519175*%i, c = 0.9868115621248269*%i-0.04506136597961512],
        [z = 1.012227741688957,c = -1.624396967608546],
        [z = 0.6736931444481549*%i-0.7131540376767388,  c = 0.9868115621009495*%i-0.04506136566593825],
        [z = (-0.6736931444481549*%i)-0.7131540376767388, c = (-0.9868115621015654*%i)-0.04506136566602404],
        [z = 0.6816651712455555*%i+0.8064792250322852,  c = (-1.100298438532418*%i)-0.1978729463920518],
        [z = 0.8064792250322852-0.6816651712455555*%i,c = 1.100298438531886*%i-0.197872946387467],
        [z = 0.9873125420152975*%i-0.04563967787575593, c = 0.9868115621249436*%i-0.04506136597927069],
        [z = (-0.9873125420152975*%i)-0.04563967787575593, c = (-0.9868115621249249*%i)-0.04506136597929692],
        [z = -1.368033648790746,c = -1.860587002096436],
        [z = -1.623768668573244,c = -1.624396967608546],
        [z = 1.600752508361204,c = -1.860587002096436],
        [z = 0.8177857184842046*%i-0.8491638964763748,  c = 0.6415066726649287*%i+0.3599331357137042],
        [z = (-0.8177857184842046*%i)-0.8491638964763748, c = 0.3599331357115682-0.6415066726792946*%i],
        [z = -1.860467532467532,c = -1.860586580956207], 
        [z = 0.1585230889211015*%i+1.129895436404861,  c = (-0.3797412017812437*%i)-1.256801993890818],
        [z = 1.129895436404861-0.1585230889211015*%i,  c = 0.3797412020742688*%i-1.256801993924219],
        [z = 1.102491882350288*%i+0.07994573682221373, c = 0.641506666713125*%i+0.3599331333375105],
        [z = 0.07994573682221373-1.102491882350288*%i, c = 0.3599331333375118-0.641506666713142*%i],
        [z = 1.10027900645412*%i-0.1977264120044163,c = 1.100298437399976*%i-0.1978729466589521],
        [z = (-1.10027900645412*%i)-0.1977264120044163, c = (-1.100298437392994*%i)-0.1978729466579122],
        [z = 0.3795145554958574*%i-1.257237017109811,  c = 0.3797412012322979*%i-1.256801993538778],
        [z = (-0.3795145554958574*%i)-1.257237017109811, c = (-0.3797412011893692*%i)-1.256801993401957],
        [z = 0.8966903093631682*%i-1.01776444141452, c = 0.986811439368143*%i-0.04506141337632084],
        [z = (-0.8966903093631682*%i)-1.01776444141452, c = (-0.9868114393633113*%i)-0.04506141338736716],
        [z = 1.407944514501891,c = -1.985409652076318],
        [z = 0.7215120925377011*%i+1.234881318742427,  c = (-1.100298500720014*%i)-0.1978727350763138],
        [z = 1.234881318742427-0.7215120925377011*%i,c = 1.100298500782114*%i-0.1978727352231734],
        [z = 0.6651899971189704*%i-1.369391104706556, c = 1.100298438532065*%i-0.1978727774731155],
        [z = (-0.6651899971189704*%i)-1.369391104706556, c = (-1.100298478086625*%i)-0.1978727911942495],
        [z = 0.1731238730127708*%i-1.554564024233688,  c = 0.3797412149717089*%i-1.256801976456581],
        [z = (-0.1731238730127708*%i)-1.554564024233688, c = (-0.3797411926534995*%i)-1.256801968631482],
        [z = 1.842105908761944,c = -1.985410334346504],
        [z = 1.956403762662807,c = -1.985409652076318]
        ]

Mandelbrot Set - Convergent Evolution of P/Q Limbs in Seahorse Valley edit

Mandelbrot Set - Convergent Evolution of P/Q Limbs in Seahorse Valley by izaytsev0

  • main cardioid seahorse valley = Gap between the head ( period 2 component) and the body (or shoulder = main cardioid). Particularly the upper one part
  • 2 windows
    • left: limbs from period 2 component
    • right: limbs from period 1 componnet
  • in each window one can see limb p/q from 14/30 on the right and increasing p ?


Compare with Real dense fractal Zoom! Part 2 by SeryZone Arts

See also edit

References edit

  1. fractalforums: julia-sets-true-shape-and-escape-time
  2. fractalforums : constructing-polynomials-whose-julia-set-resemble-a-desired-shape
  3. fractalforums : constructing-polynomials-with-attracting-cycles
  4. The W. Thurston algorithm applied to real polynomial maps Araceli Bonifant, J. Milnor, S. Sutherland Published 15 May 2020
  5. The fundamental theorem of algebra in wikipedia
  6. Ed Pegg Jr "The Fundamental Theorem of Algebra" http://demonstrations.wolfram.com/TheFundamentalTheoremOfAlgebra/ Wolfram Demonstrations Project Published: November 10 2011
  7. Factor theorem in wikipedia
  8. Multiplicity_of_a_root_of_a_polynomial in wikipedia
  9. fractalforums.org : julia-sets-true-shape-and-escape-time
  10. Stability_of_periodic_points_(orbit)_-_multiplier in wikipedia