< Neo-Quenya



0 to 10Edit

Standard Alternative
ð t&4# 0 munta[1]
ñ t%5 1 min
ò `C1;E 2 atta
ó 5$m$ 3 neldë
ô aD4# 4 canta
õ j$r$ 5 lempë
ö `Vv$ 6 enquë
÷ `N1Y+ 7 otso
ø 1Ym^ 8 toldo
ù 5$61R 9 nertë
ðñ zlD5 10 quain zR`C5 quëan
  1. not the word for zero, but can be used for zero. From the word munta meaning "nothing".

11 to 19Edit

The numbers 11 to 19 follow the pattern of using the stem form of the numeral with the suffix –quë:

Standard Other Std. Forms Alternatives
ññ t%v$ 11 minquë --- --- --- ---
òñ hÍUv$ 12 yunquë 7D81E rasta[1] --- ---
óñ 5$j$zF 13 nelequë 5$jzF nelquë zlD5$j quainel hÍUv$4# yunquenta [2]
ôñ aD5#zR 14 canaquë aDv$ canquë zlDaD5 quaican
õñ j$qRv$ 15 lepenquë --- --- zlDj$qR5 quailepen
öñ `V5$v$ 16 enenquë --- --- zlDv$ quainquë
÷ñ `N1YzR 17 otoquë --- --- --- ---
øñ 1Yj^zR 18 toloquë --- --- --- ---
ùñ 5$1R6zR 19 neterquë --- --- --- ---
  1. There are a few words for the number 12: hÍUv$yunquë is used for counting, 7D81Erasta for "Dozen", possibly Duodecimal in origin.
  2. hÍUv$4# yunquenta being from hÍUv$yunquë and `V4#enta "another, one more", meaning "Twelve and one more".

20 to 100Edit

The multiples of 10, from 20 to 90, are constructed with either the suffixes –quëan or –quain:

-quëan -quain
ðñ zR`C5 10 quëan zlD5 quain
ðò hÍUzR`C5 20 yuquëan hÍUzlD5 yuquain
ðó 5$jzR`C5 30 nelquëan 5$jzlD5 nelquain
ðô aD5#zR`C5 40 canaquëan aD5#zlD5 canaquain
ðõ j$qRv$`C5 50 lepenquëan j$qRvlD5 lepenquain
ðö `V5$v$`C5 60 enenquëan `V5$vlD5 enenquain
ð÷ `N1YzR`C5 70 otoquëan `N1YzlD5 otoquain
ðø 1Yj^zR`C5 80 toloquëan 1Yj^zlD5 toloquain
ðù 5$1R6zR`C5 90 neterquëan 5$1R6zlD5 neterquain
ððñ 1Ua|D 100 tuxa 9C7D5Ì$ haranyë[1]
  1. Possible known word for 100 from the Númenorean calendar. Meaning uncertain whether it's the word for century, or the last year of a century.

To make a number between the multiples of 10, the units are written first, then the tens (Similar to numerals in German or Dutch):

ôõ aD4# j$qRv$`C5 54 canta lepenquëan

The numbers between 100 and 200 can be made in the same fashion:

ðôñ aD5#zR`C5 1Ua|D 140 canaquëan tuxa
ò÷ñ `C1;D `N1YzR`C5 1Ua|D 172 atta otoquëan tuxa

Just as for 12, the numbers 110 and 120 can be written in two different ways:

ðññ zR`C5 1Ua|D 110 quëan tuxa t%5%zR`C5 miniquëan
ðòñ hÍUzR`C5 1Ua|D 120 yuquëan tuxa hÍU5$v$`C5 yunenquëan

100 to 1,000Edit

To write the numbers 200 to 900 we use the same prefixes as the multiples of 10, but this time with the suffix –tuxa:

ððñ 1Ua|D 100 tuxa
ððò hÍ~M1Ua|D 200 yútuxa
ððó 5$j1Ua|D 300 neltuxa
ððô aD5#1Ua|D 400 canatuxa
ððõ j$qR4&a|D 500 lepentuxa
ððö `V5$4&a|D 600 enentuxa
ðð÷ `N1Y1Ua|D 700 ototuxa
ððø 1Yj^1Ua|D 800 tolotuxa
ððù 5$1R61Ua|D 900 netertuxa
ððð-ñ t$f$ 1,000 mencë[1] 9~Mt$ húmë[2]
  1. Theorised word from Sindarin: t5$x$73Y Menegroth "The Thousand Caves".t5$x$ meneg? possibly meaning "thousand", uncertain if it is of Primitive Elvish origin.
  2. Attested "Qenya" word, may not be part of Late-Quenya.

1,000 to 10,000:Edit

Standard Alternative
ððð-ñ t$f$ 1,000 mencë zR`C4&a|D quëantuxa
ððñ-ñ 1Ua|D t$f$ 1,100 tuxa mencë t%v$4&a|D minquentuxa
ððò-ñ hÍ~M1Ua|D t$f$ 1,200 yútuxa mencë hÍUv$4&a|D yunquentuxa
ððó-ñ 5$j1Ua|D t$f$ 1,300 neltuxa mencë 5$j$zR4&a|D nelequentuxa
ððô-ñ aD5#1Ua|D t$f$ 1,400 canatuxa mencë aD5#zR4&a|D canaquentuxa
ððõ-ñ j$qR4&a|D t$f$ 1,500 lepentuxa mencë j$qRv$4&a|D lepenquentuxa
ððö-ñ `V5$4&a|D t$f$ 1,600 enentuxa mencë `V5$v$4&a|D enenquentuxa
ðð÷-ñ `N1Y1Ua|D t$f$ 1,700 ototuxa mencë `N1YzR4&a|D otoquentuxa
ððø-ñ 1Yj^1Ua|D t$f$ 1,800 tolotuxa mencë 1Yj^zR4&a|D toloquentuxa
ððù-ñ 5$1R61Ua|D t$f$ 1,900 netertuxa mencë 5$1R64&a|D neterquentuxa

Standard Alternative
ððð-ñ t$f$ 1,000 mencë zR`C4&a|D quëantuxa
ððð-ò hÍ~Mt$f$ 2,000 yúmencë hÍ~MzR`C4&a|D yúquëantuxa
ððð-ó 5$jt$f$ 3,000 nelmencë 5$jzR`C4&a|D nelquëantuxa
ððð-ô aD5#t$f$ 4,000 canamencë aD5#zF`C4&a|D canaquëantuxa
ððð-õ j$qRt"$f$ 5,000 lepemmencë j$qRv$`C4&a|D lepenquëantuxa
ððð-ö `V5$t"$f$ 6,000 enemmencë `V5$v$`C4&a|D enenquëantuxa
ððð-÷ `N1Yt$f$ 7,000 otomencë `N1YzR`C4&a|D otoquëantuxa
ððð-ø 1Yj^t$f$ 8,000 tolomencë 1Yj^zR`C4&a|D toloquëantuxa
ððð-ù 5$1R6t$f$ 9,000 netermencë 5$1R6zR`C4&a|D neterquëantuxa
ððð-ðñ zR`Ct"$f$ 10,000 quëammencë ------ ------

10,000 to 1 Million:Edit

ððð-ðñ zF`Ct"$f$ 10,000 quëammencë ððð-ððñ 1Ua|Dt$f$ 100,000 tuxamencë
ððð-ðò hÍUzF`Ct"$f$ 20,000 yuquëammencë ððð-ððò hÍ~M1Ua|Dt$f$ 200,000 yútuxamencë
ððð-ðó 5$jzF`Ct"$f$ 30,000 nelquëammencë ððð-ððó 5$j1Ua|Dt$f$ 300,000 neltuxamencë
ððð-ðô aD5#zF`Ct"$f$ 40,000 canaquëammencë ððð-ððô aD5#1Ua|Dt$f$ 400,000 canatuxamencë
ððð-ðõ j$qRv$`Ct"$f$ 50,000 lepenquëammencë ððð-ððõ j$qR4&a|Dt$f$ 500,000 lepentuxamencë
ððð-ðö `V5$v$`Ct"$f$ 60,000 enenquëammencë ððð-ððö `V5$4&a|Dt$f$ 600,000 enentuxamencë
ððð-ð÷ `N1YzR`Ct"$f$ 70,000 otoquëammencë ððð-ðð÷ `N1Y1Ua|Dt$f$ 700,000 ototuxamencë
ððð-ðø 1Yj^zR`Ct"$f$ 80,000 toloquëammencë ððð-ððø 1Yj^1Ua|Dt$f$ 800,000 tolotuxamencë
ððð-ðù 5$1R6zF`Ct"$f$ 90,000 neterquëammencë ððð-ððù 5$1R61Ua|Dt$f$ 900,000 netertuxamencë
ððð-ððñ 1Ua|Dt$f$ 100,000 tuxamencë ððð-ððð-ñ t%2~N7D 1,000,000 mindóra

1 Million to 100 Million:Edit

ððð-ððð-ñ t%2~N7D 1,000,000 mindóra ððð-ððð-ðñ zF`C2~N7D 10,000,000 quëandóra
ððð-ððð-ò hÍU2~N7D 2,000,000 yundóra ððð-ððð-ðò hÍUzF`C2~N7D 20,000,000 yuquëandóra
ððð-ððð-ó 5$m~N7D 3,000,000 neldóra ððð-ððð-ðó 5$jzF`C2~N7D 30,000,000 nelquëandóra
ððð-ððð-ô aD2~N7D 4,000,000 candóra ððð-ððð-ðô aD5#zF`C2~N7D 40,000,000 canaquëandóra
ððð-ððð-õ j$qR2~N7D 5,000,000 lependóra ððð-ððð-ðõ j$qRv$`C2~N7D 50,000,000 lepenquëandóra
ððð-ððð-ö `V5$2~N7D 6,000,000 enendóra ððð-ððð-ðö `V5$v$`C2~N7D 60,000,000 enenquëandóra
ððð-ððð-÷ `N1Y2~N7D 7,000,000 otondóra ððð-ððð-ð÷ `N1YzR`C2~N7D 70,000,000 otoquëandóra
ððð-ððð-ø 1Ym~N7D 8,000,000 toldóra ððð-ððð-ðø 1Yj^zR`C2~N7D 80,000,000 toloquëandóra
ððð-ððð-ù 5$1Ru~N7D 9,000,000 neterdóra ððð-ððð-ðù 5$1R6zF`C2~N7D 90,000,000 neterquëandóra
ððð-ððð-ðñ zF`C2~N7D 10,000,000 quëandóra ððð-ððð-ððñ 1Ua|D2~N7D 100,000,000 tuxandóra

100 Million & Beyond:Edit

ððð-ððð-ððñ 1Ua|D2~N7D 100,000,000 tuxandóra
ððð-ððð-ððò hÍ~M1Ua|D2~N7D 200,000,000 yútuxandóra
ððð-ððð-ððó 5$j1Ua|D2~N7D 300,000,000 neltuxandóra
ððð-ððð-ððô aD5#1Ua|D2~N7D 400,000,000 canatuxandóra
ððð-ððð-ððõ j$qR4&a|D2~N7D 500,000,000 lepentuxandóra
ððð-ððð-ððö `V5$4&a|D2~N7D 600,000,000 enentuxandóra
ððð-ððð-ðð÷ `N1Y1Ua|D2~N7D 700,000,000 ototuxandóra
ððð-ððð-ðð÷ 1Yj^1Ua|D2~N7D 800,000,000 tolotuxandóra
ððð-ððð-ððù 5$1R61Ua|D2~N7D 900,000,000 netertuxandóra
ððð-ððð-ððð-ñ t$f$2~N7D 1,000,000,000 mencendóra[1]
  1. This maybe how such a number could be constructed based on the Long Scale counting:
    Long Scale: 1 Milliard = Short Scale: 1 Billion / 1 Thousand Millions = 109
    Long Scale 1 Billion = Short Scale 1 Trillion / 1 million millions = 1012

Numbers are said to follow the noun, except for `V6 er "one, alone". Before `C1;E atta "two", the noun is in "singular" form.

`Vm# `C1;E Elda atta - "Two Eldar" - lit. "two Elda"
`Vm#6 5$m$ Eldar neldë - "Three Eldar"
`Vj$5 `C1;E Elen atta - "Two stars" - lit. "two star"
`Vj$5% 5$m$ Eleni neldë - "Three stars"


The first three ordinals are irregular, then from four onwards, we remove the last vowel of the cardinal number and add \`V`Cëa*

t%5Ì# minya 1st first t%v$`C minquëa 11th eleventh
1E1ÎE tatya 2nd second hÍUv$`C yunquëa 12th twelfth
5$j´# nelya 3rd third 5$j$zF`C nelequëa 13th thirteenth
aD4$`C cantëa 4th fourth aD5#zF`C canaquëa 14th fourteenth
j$r$`C lempëa 5th fifth j$qRv$`C lepenquëa 15th fifteenth
`Vv$`C enquëa 6th sixth `V5$v$`C enenquëa 16th sixteenth
`N1iR`C otsëa 7th seventh `N1YzR`C otoquëa 17th seventeenth
1Ym$`C toldëa 8th eighth 1Yj^zR`C toloquëa 18th eighteenth
5$61R`C nertëa 9th ninth 5$1R6zF`C neterquëa 19th nineteenth
zlD5$`C quainëa 10th tenth hÍUzlD5$`C yuquainëa 20th twentieth


Fractions can be made by compounding the numeral with the word `C81E asta "month; division, part (esp. one of other equal parts)":

Standard Alternative Standard Alternative
`CzD aqua 1/1 Whole t%v$81E minquesta 1/11 one eleventh
qR7R81E peresta 1/2 half qR7ÎD perya hÍUv$81E yunquesta 1/12 one twelfth
5$m$81E neldesta 1/3 one third 5$j$zF81E nelequesta 1/13 one thirteenth 5$jzF81E nelquesta
aD4#81E canasta 1/4 one fourth aD5#zF81E canaquesta 1/14 one fourteenth aDv$81E canquesta
j$qR81E lepesta 1/5 one fifth j$qFv$81E lepenquesta 1/15 one fifteenth
`Vv$81E enquesta 1/6 one sixth `V5$v$81E enenquesta 1/16 one sixteenth
`N1Y81E otosta 1/7 one seventh `N1YzR81E otoquesta 1/17 one seventeenth
1Yj^81E tolosta 1/8 one eighth 1Yj^zR81E toloquesta 1/18 one eighteenth
5$7R81E neresta 1/9 one ninth 5$1R6zR81E neterquesta 1/19 one nineteenth
zlD81E quaista[1] 1/10 one tenth alD81E caista[2] hÍUzlD81E yuquaista 1/20 one twentieth hÍ~MalD81E yúcaista
  1. Suggested by Helge Fauskanger.
  2. Earlier word, may be outdated.


There also exists quotientals that are used when something has happened a certain number of times. They are used as adverbs:

`V6 er once
hÍ~M twice
5$j nel thrice/three-times
aD5 can four-times

The higher numbers are formed with the suffix \j°&t$llumë:

j$r$j°&t$ lempellumë five-times t$f$j°&t$ mencellumë thousand-times
`Vv$j°&t$ enquellumë six-times zR`Ct"$f$j°&t$ quëammencellumë ten thousand-times
zR`Cj°&t$ quëallumë ten-times 1Ua|Dt$f$j°&t$ tuxamencellumë hundred thousand-times
1Ua|Dj°&t$ tuxallumë hundred-times t%2~N7Dj°&t$ mindórallumë million-times

Tengwar NumeralsEdit

Writing the numerals in Tengwar is quite different to write compared with Arabic numerals, but not too different from them to give any form of great difficulty in learning it.

As the elves originally used the duodecimal (base-12) number system, they had need for 12 different digits. Note that the letters A and B used in the table equal 10 and 11 in decimal respectively. Therefore 10 in duodecimal is equal to 12 in decimal

Numerals 0 1 2 3 4 5 6 7 8 9 A-10 B-11 10-12
Decimal ð ñ ò ó ô õ ö ÷ ø ù ðñ ññ òñ
Duodecimal ð ñ ò ó ô õ ö ÷ ø ù ú û ðñ

Tengwar numerals differ from Arabic numerals in that they are written from right to left, with the lowest power written first:

Reading DecimalEdit

  • ðñ = 01 = 0 ones, 1 ten = 10
  • ððñ = 001 = 0 ones, 0 tens, 1 hundred = 100
  • óòñ = 321 = 3 ones, 2 tens, 1 hundred = 123
  • ðòôñ = 0241 = 0 ones, 2 tens, 4 hundreds, 1 thousand = 1420

Writing Decimal Notations

Decimal numbers can be given a single dot above the numeral to indicate a decimal number:

  • ðGñT

Larger numbers in decimal can be given a single bar above the numerals:

  • ðñìòîóìôîõîöì÷îøìùì


  • ö%ñGðGò% - öìñîðîòî = 6102 = 2016

Reading DuodecimalEdit

Not much is known on the names of duodecimal numbers, but a theorised construction of these names can be found at the duodecimal numerals here.

  • ðñ = 01 = 0 ones, 1 twelves = 10 = 12 in Decimal
  • ððñ = 001 = 0 ones, 0 twelves, 1 gross = 100 = 144 in Decimal
  • óòñ = 321 = 3 ones, 2 twelves, 1 gross = 123 = 167 in Decimal
  • ôúù = 4A9 = 4 ones, A twelves or 10 twelves, 9 grosses = 9A4 = 1420 in Decimal
  • ûððñ = B001 = B ones or 11 ones, 0 twelves, 0 grosses, 1 great gross = 100B = 1739 in Decimal

Writing Duodecimal Notations

Duodecimal numbers are indicated by having single dot tehta placed below the numbers. The second digit however is given a circular tehta instead:

  • ðÊñ¨òÈóÈôÊõÈöÉ÷ÉøÉùÈúÊûÊ

Like large decimal numbers, the larger duodecimal numbers are given a bar for the numerals, but instead put below:

  • ðñíòíóíôïõïöí÷ïøíùíúïûï


  • ðÊð¨òÈñÊ - ððíòïñï = 0021 = 1200 Duodecimal = 2016 Decimal

>> Neo-Quenya >> Numerals